ON A CONJECTURE OF ANDREWS

MARIE JAMESON AND ROBERT LEMKE OLIVER

ABSTRACT. Following G.E. Andrews, let ¢}(n) (resp. Q}(n)) be the number of partitions
of n into d-distinct parts with difference at least 2d between multiples of d (resp. into
parts which are £1, +(d + 2) (mod 4d)). Andrews conjectured that ¢j(n) — Q5(n) > 0 for
all n. We prove that this conjecture is true for sufficiently large n by establishing that

lim, o0 (g5 (n) — Q%(n)) = +o00.

1. INTRODUCTION

The first Gollnitz-Gordon identity states that the number of partitions of n into 2-distinct
parts, with difference at least 4 between even parts, equals the number of partitions of n
into parts congruent to 1,4 (mod 8). Here, a d-distinct partition is defined to be a partition
in which the difference between any two parts is at least d. In addition, an identity of
Schur states that the number of partitions of n into 3-distinct parts, with difference at
least 6 between multiples of 3, equals the number of partitions of n into parts congruent to
+1 (mod 6).

It is natural to investigate whether this phenomenon has a generalization to further d > 3,
and in this direction H.L. Alder [1] showed that if d > 3, the number of partitions of n into
d-distinct parts where parts divisible by d differ by at least 2d is not equal to the number of
partitions of n into parts taken from any set of integers whatsoever. G.E. Andrews considered
a different generalization by considering the functions

(1.1) ¢;(n) = p(n|d-distinct parts, no consecutive multiples of d)
(1.2) Q5(n) = p(n|parts = £1, £(d + 2) (mod 4d)).

At a 2009 conference in Ottawa, he made the following conjecture! to accompany Alder’s
Conjecture (for more information on Alder’s Conjecture, see [2], [3], [4], [7], and [8]).

Conjecture (Andrews). For d > 1 and n > 1, we have that
qy(n) — Qy(n) > 0.

Clearly, the conjecture holds for d = 2 and d = 3 by the Gollnitz-Gordon and Schur
identities. Although the truth of this conjecture remains open, we show that the conjecture
holds for sufficiently large n.

Theorem 1.1. For fixed d > 3,
lim (g3(n) — Qy(n)) = +oo.
n—oo
1A few days after the conference, in a private communication, he modified the conjecture. We are con-

cerned with this modification.
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In addition to making the above conjecture, Andrews defined
7(n) = p(n|parts = £1,+(d 4+ 2), £(d +6), ..., £(d + 4j + 2) (mod 4d)),
where j = |(d — 2)/4], and wondered which values of d would yield
(1.3) ga(n) — Qg (n) = 0.

Clearly, (1.3) implies the truth of Andrews’s conjecture. Unfortunately, it is not true for all
values of d (it fails, for example, when d = 14 and n = 644). We find which values of d cause
(1.3) to hold (or fail) asymptotically.

Theorem 1.2. Assuming the notation above, the following are true:
(1) If4 <d <13 or d =17, and d # 6 or 10, then
Tim (gi(n) — Q5 (n)) = +oc.
(2) If d =14 or 15, or d > 18, then
lim (QF"(n) — ¢z(n)) = +oo.

n—oo

Remark. To establish Theorem 1.2, we show that the orders of ¢};(n) and Q*(n) are different.

Remark. Theorem 1.2 does not apply when d = 6,10, or 16. In these cases, we expect ¢;(n)
to be asymptotically larger than Q5*(n).

In the next section, to establish these results, we find an asymptotic expression for ¢j(n)
by relating it to g4(n), where

qa(n) := p(n|d-distinct parts).

Asymptotics for g4(n) are known, and they have been very helpful in proving Alder’s Conjec-
ture and its refinement by Andrews. We use these formulae to prove Theorem 1.1 in Section
2.1 and Theorem 1.2 in Section 2.2.
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2. PROOF OF RESULTS

As stated above, rather than find an asymptotic formula for ¢j(n) directly, we instead
compare it to the function gq4(n) without the added difference condition between multiples
of d. We speculate that relatively few d-distinct partitions of n have consecutive multiples
of d, so we expect that ¢j(n) < qa(n). At present, this sort of relation is difficult to obtain.
However, we note that

(2.1) g3(n) > qat1(n)

for all d > 2 and n > 1. From either G. Meinardus [5] or the authors and C. Alfes [2], we
have the asymptotic formula

(2.2) qa(n) ~ con” 3 exp (2 Adn) :
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where ¢g is an explicit constant depending only on d,
dlog® = p
_dlog’p e

2 r2’
r=1

(23) Ad :

and p = pg is the unique root of %+ z — 1 = 0 in the interval [0, 1]. Hence, (2.1) and (2.2)
imply that

(2.4) ¢:(n) > n"7 exp (2 AdHn) :

2.1. Proof of Theorem 1.1. We must consider Q%(n). A result of V.V. Subrahmanyasastri
(Theorem 10, [6]) yields the following asymptotic formula for Q%(n):

* _3 2n
~ 4 _
Q4(n) ~ cn~1exp (71’ 3d> ,
where ¢; is an explicit constant. Recalling (2.4), our task is now to show that for all d > 4,

2
@ 3_d<2 Adya,

or, equivalently, that

(2.5) V2dAg, > %

From (2.3), we have that
2dAgp1 > d’log? pata,

and so we consider when
T

2.6 dlo >
( ) | gpd+1| \/5

Since |dlog pgy1] is increasing in d, one can verify that (2.6) holds for d > 13. A numerical
computation verifies (2.5) in the remaining 4 < d < 12.

2.2. Proof of Theorem 1.2. As in Section 2.1, Theorem 10 of [6] applies. In particular,
we have that
n|2+ %]

3d

kK

() ~ con“dexp |

for an explicit constant ¢,. A numerical computation now shows that

2442
T Lg}—d‘lj < 2v/Agp
for 4 <d <13, d # 6,10, and for d = 17. Hence, for these d, (2.4) implies that
T (g3(n) — Qi (n)) = +o0
For the other values of d # 6, 10, or 16, instead of showing that

Tim (Q(n) — gj(n)) = +oo.
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we show the stronger statement that

lim (Q7(n) — qa(n)) = +o0.

n—oo

Hence, we must show that for these d,

(2.7)
But
LQ + %J T
T >
3d V12
for all d and -
2V A < —

V12

for d > 26. A numerical computation verifies (2.7) in the remaining cases.

Remark. One can check that (2.7) fails to hold when d = 6, 10, or 16. Our above speculation
that ¢;(n) < gi(n) suggests that, for these values of d,

Tim (g3(n) — Qi (n)) = +oo.
although a stronger result along the lines of (2.4) would be needed to prove this.
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