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Abstract. Let G(x) be an irreducible polynomial with integer coefficients. It is conjectured
that the set {n ∈ N : G(n) is prime} is infinite for most G(x). If Pr denotes the set
of squarefree positive integers with at most r prime factors, we consider the set {n ∈ N :
G(n) ∈ Pr} with the goal of showing that it is infinite for a suitable choice of r. Considerable
work has been done on this problem, with the most notable results being due to Iwaniec,
Buhštab, and Richert. Here we show that if deg(G(x)) = 2, then we may take r = 2.

1. Introduction

Let G(x) = cgx
g + cg−1x

g−1 + . . .+ c1x+ c0 ∈ Z[x] be an irreducible polynomial of degree
g and discriminant D, and let ρ(m) = ρG(m) denote the number of incongruent solutions to
the congruence G(n) ≡ 0 (mod m). Throughout, we assume that cg > 0 and ρ(p) 6= p for all
primes p. The question of how often G(x) represents primes is the content of a conjecture
by Bouniakowsky [2], and, more generally, by Schinzel [13] and Bateman and Horn [1]:

Conjecture. Assuming the notation and hypotheses above, we have that

#{1 ≤ n ≤ x : G(n) is prime} ∼ ΓG ·
x

log x
,

where

ΓG :=
1

g

∏
p prime

(
1− ρ(p)

p

)(
1− 1

p

)−1

.

The prime number theorem for primes in arithmetic progressions implies that this conjec-
ture is true when g = 1. Very little is known if g ≥ 2.

Remark. There have been fantastic recent results on the related problem for polynomials
in two variables, such as x2 + y4 and x3 + 2y3, which Friedlander and Iwaniec [5] and Heath-
Brown [6] have shown represent primes infinitely often; in fact, they have obtained the
asymptotic orders of the sets of such primes.

Here we consider how frequently G(x) represents numbers that are “almost prime.” To
this end, let Pr denote the set of squarefree positive integers with at most r distinct prime
factors. The best general result along the lines of the above conjecture asserts that a degree
g polynomial G(x) represents Pg+1 infinitely often. For g ≤ 7, this is due to Kuhn [9], Wang
[15], and Levin [11], and for general g this follows from work of Buhštab [3] and Richert
[12]. In the special case of G(x) = x2 + 1, a deep theorem of Iwaniec [8] states that G(x)
represents P2 infinitely often. To prove this, Iwaniec obtained a new form of the error in
the linear sieve, and he proved an equidistribution result about the roots of the quadratic
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congruence x2 + 1 ≡ 0 (mod m). By generalizing Iwaniec’s result, we are able to obtain the
following theorem.

Theorem 1. If G(x) = c2x
2 + c1x + c0 ∈ Z[x] is irreducible, with c2 > 0 and ΓG 6= 0, then

there are infinitely many positive integers n such that G(n) is in P2.

Remark. 1) If G(x) = c2x
2 + c1x + c0 ∈ Z[x] is irreducible, with c2 > 0 and ΓG = 0,

then, since ρG(p) ≤ 2 for all primes p, we must have that ρG(2) = 2. The polynomials
G0(x) := G(2x)/2 and G1(x) := G(2x + 1)/2 are irreducible, have integer coefficients, and
satisfy ρG0(2) = ρG1(2) = 1. Theorem 1 then shows that G(n) is 2P2 infinitely often.

2) The author, in unpublished work, has obtained conditions on higher degree G(x) which
would allow one to conclude that G(x) represents Pg infinitely often. Unfortunately, these
conditions are rather technical, and there are no higher degree polynomials yet known to
satisfy them.

To prove Theorem 1, we use the method employed by Iwaniec [8] to consider arbitrary
quadratic polynomials. In Section 2, we transform the original problem into a sifting problem
to which we can apply Iwaniec’s linear sieve inequality. To obtain non-trivial cancellation
in the resulting error terms and deduce Theorem 1, we need a result on the distribution
of roots of G(x) to various moduli, which we prove in Section 3. To prove this result for
G(x) = x2 +1, Iwaniec made use of the fact that disc(x2 +1) = −4 is negative, which allowed
him to use the theory of positive definite quadratic forms. It is here, therefore, that most
of the additional work in handling arbitary quadratic polynomials is necessary, to account
for the fact that the discriminant may be positive and also that G(x) may not be monic.
This equidistribution problem also provides the obstruction for establishing the analogue of
Theorem 1 for higher degree polynomials.
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2. Proof of Theorem 1

We assume from here on out that G(x) is a fixed irreducible quadratic polynomial with
positive leading coefficent such that ρ(2) 6= 2. We apply the method of Iwaniec [8] to obtain
an estimate for

#{1 ≤ n < x : G(n) ∈ P2}.
We will introduce a weighted sum in Section 2.1 which will change the problem into one of
establishing estimates of sifting functions, which we study by using the linear sieve in Section
2.2. In Section 2.3, we then use these estimates to complete the proof of Theorem 1.

2.1. A weighted sum. If we let

(2.1) A = Ax := {G(n) : 1 ≤ n < x},
we wish to estimate the sum ∑

a∈A∩P2

1.
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To do so, we introduce a weight function w(n) and instead sum w(a). Let λ be a real number
such that 2 ≤ λ < 3, and assume x is sufficiently large so that G(n) ≤ xλ for all n ≤ x. If n
is a positive integer, let pn and ω(n) denote the smallest prime divisor of n and the number
of distinct prime divisors of n, respectively. For a prime p < xλ/2 such that p|n, let

ωp(n) :=


1− log p

λ/2 log x
if p = pn

log pn
λ/2 log x

if p > pn and p < xλ/4

1− log p
λ/2 log x

if p > pn and p ≥ xλ/4,

then let

(2.2) w(n) := 1− λ/2

3− λ
∑

p|n,p<xλ/2
ωp(n).

Remark. The weights w(n) are the same weights that Iwaniec used, which are due to Richert
(unpublished, see [8]). Laborde [10] developed weights which would yield a slightly better
implied constant for the asymptotic #(A ∩ P2) � x

log x
, but since we have suppressed the

constant, we choose to use Richert’s weights to maintain continuity with Iwaniec.

We require a lemma due to Iwaniec [8, Lemma 1], which asserts that the weight function
w(n) detects P2 for squarefree n.

Lemma 1 (Iwaniec). If n ≤ xλ and w(n) > 0, then n has at most 2 distinct prime factors.

By Lemma 1, for any z ≤ xλ/4 we have that

#{a ∈ A : a ∈ P2} ≥
∑
a∈A

(a,P (z))=1
a squarefree

w(a),

where P (z) =
∏

p<z p. If z = xγ for some γ > 0, there are few non-squarefree a ∈ A such

that (a, P (z)) = 1, as ∑
n<x

(G(n),P (z))=1
G(n) not squarefree

1 � xλ/2z−1/2 + x2/3 log4/3 x,

which we obtain by Iwaniec’s argument for x2 + 1 and an application of the square sieve [4,
Theorem 2.3.5]. Hence, we consider the sum

(2.3) W (A, z) =
∑
a∈A

(a,P (z))=1

w(a),

with the goal of showing that W (A, z)� x
log x

. For any positive integer q, let

Aq := {a ∈ A : a ≡ 0 (mod q)}.

Following Iwaniec, we can write W (A, z) in terms of the sifting functions

(2.4) S(Aq, u) := #{a ∈ Aq : (a, P (u)) = 1},
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namely we have that

(2.5)

W (A, z) = S(A, z) +
λ/2

3− λ

 ∑
z≤p<xλ/4

∑
z≤p1<p

log p/p1

λ/2 log x
S(App1 , p1)

−
∑

z≤p<xλ/4

((
1− 2

log p

λ/2 log x

)
S(Ap, p) +

log p

λ/2 log x
S(Ap, z)

)

−
∑

xλ/4<p<xλ/2

(
1− log p

λ/2 log x

)
S(Ap, z)

 .
2.2. The linear sieve. We have reduced the problem to that of obtaining a lower bound
for the function W (A, z) defined by (2.3), and by (2.4) and (2.5) this reduces to the problem
of obtaining good estimates for the sifting functions S(Aq, u). We recall the following linear
sieve inequality [8, Lemma 2].

Lemma 2 (Iwaniec). Let q ≥ 1, u ≥ 2, M ≥ 2, and N ≥ 2. For any η > 0 we have

S(Aq, u) ≤ V (u)x
ρ(q)

q
(F (s) + E) + 2η

−7

R(Aq;M,N),

S(Aq, u) ≥ V (u)x
ρ(q)

q
(f(s)− E)− 2η

−7

R(Aq;M,N),

where s = logMN/ log u, E � ηs2 + η−8e−s(logMN)−1/3, and

V (u) =
∏
p<u

(
1− ρ(p)

p

)
.

The functions F (s) and f(s) are the continuous solutions of the system of differential-
difference equations

sf(s) = 0 if 0 < s ≤ 2,
sF (s) = 2eC if 0 < s ≤ 3,
(sf(s))′ = F (s− 1) if s > 2,
(sF (s))′ = f(s− 1) if s > 3,

where C is Euler’s constant. The error term R(Aq;M,N) has the form

(2.6) R(Aq;M,N) =
∑

m<M,n<N,mn|P (u)

ambnr(Aq;mn),

where

r(Aq; d) := |A[q,d]| −
ρ([q, d])

[q, d]
x,

and the coefficients am and bn are real numbers, bounded by 1 in absolute value, and sup-
ported on squarefree values of m and n.

The functions F (s) and f(s) both tend to 1 monotonically as s → ∞, F (s) from above
and f(s) from below. Thus, we wish to choose M and N so that s is large, but we do so
at the expense of increasing the size of the error term R(Aq;M,N). Consequently, we are
mainly concerned with bounding R(Aq;M,N) for large values of M and N .
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Lemma 3. With notation as in Lemma 2, for any ε > 0 we have

∑
m<x1−8ε

∣∣∣∣∣∣∣∣
∑

n<xγ0−γ1ε

(n,m)=1

bnr(A;mn)

∣∣∣∣∣∣∣∣� x1−ε,

where γ0 := 1−α0

2(1+β0)
and γ1 := 4α0

1+β0
, where α0 and β0 are defined in Lemma 4.

Before we prove Lemma 3, we state a result whose proof we postpone until Section 3 (see
Lemma 8).

Lemma 4. Let q be a squarefree number, d an odd divisor of q, µ an integer prime to d,
and ω a root of G(x) modulo d. Furthermore, let M < M1 < 2M and 0 ≤ α < β < 1. Let
P (M1,M ; q, d, µ, ω, α, β) denote the number of pairs of integersm,Ω such thatM < m < M1,
(m, q) = 1, m ≡ µ (mod d), α ≤ Ω

mq
< β, G(Ω) ≡ 0 (mod mq), and Ω ≡ ω (mod d). Then

there are constants A(q) > 0, α0 < 1 and β0 such that, for every ε > 0,

P (M1,M ; q, d, µ, ω, α, β) = (β − α)(M1 −M)ρ
(q
d

) A(q)

φ(d)
+O

(
Mα0+εqβ0+ε

)
.

Proof of Lemma 3. Let

B(x;m,N) :=
∑

n<N,(n,m)=1

bnr(A;mn).

Our initial task will be to bound B(x;m,N) by using Lemma 4. By the Cauchy-Schwarz
inequality, we get

(2.7)
∑

M<m<2M

|B(x;m,N)| ≤M
1
2

( ∑
M<m<2M

B(x;m,N)2

) 1
2

.

Since we have that

B(x;m,N) =
∑

0≤v<m
G(v)≡0(mod m)

∑
n<N

(n,m)=1

bn


∑
k<x

k≡v(mod m)
G(k)≡0(mod n)

1− x

m

ρ(n)

n

 ,

the Cauchy-Schwarz inequality implies that

B(x;m,N)2 ≤ ρ(m)
∑

0≤v<m
G(v)≡0(mod m)


∑
n<N

(n,m)=1

bn


∑
k<x

k≡v(mod m)
G(k)≡0(mod n)

1− x

m

ρ(n)

n




2

� M ε
∑

0≤v<m
G(v)≡0(mod m)


∑
n<N

(n,m)=1

bn


∑
k<x

k≡v(mod m)
G(k)≡0(mod n)

1− x

m

ρ(n)

n




2

.
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Expanding the square on the right-hand side and reintroducing the sum over m, we get that

(2.8)
∑

M<m<2M

B(x;m,N)2 �M ε
(
W (x;M,N)− 2xV (x;M,N) + x2U(M,N)

)
,

where

W (x;M,N) :=
∑

M<m<2M

∑
0≤v<m

G(v)≡0(mod m)

∑
n1,n2<N

(n1n2,m)=1

bn1bn2

∑
k1,k2<x

k1≡k2≡v(mod m)
G(k1)≡G(k2)≡0(mod n)

1,(2.9)

V (x;M,N) :=
∑

M<m<2M

∑
0≤v<m

G(v)≡0(mod m)

1

m

∑
n1,n2<N

(n1n2,m)=1

bn1bn2

ρ(n2)

n2

∑
k<x

k≡v(mod m)
G(k)≡0(mod n1)

1,(2.10)

and

(2.11) U(M,N) :=
∑

M<m<2M

∑
0≤v<m

G(v)≡0(mod m)

1

m2

∑
n1,n2<N

(n1n2,m)=1

bn1bn2

ρ(n1)ρ(n2)

n1n2

.

We will estimate W (x;M,N), V (x;M,N), and U(M,N) separately with the goal of showing
that their main terms cancel in the expression (2.8). Our main tools to this end are Lemma 4
and partial summation. We follow the method of Iwaniec [8, Proof of Proposition 1] closely,
with more effort being necessary only in the estimation of W (x;M,N). Consequently, we
state only the results for U(M,N) and V (x;M,N), noting that they follow in the same
fashion as the estimate of W (x;M,N) we provide below. In particular, the required estimate
for U(M,N) is

(2.12) U(M,N) =
1

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)

n1n2

A([n1, n2]) +O
(
Mα0−2+εN2β0+ε

)
,

and the required estimate for V (x;M,N) is

(2.13) V (x;M,N) =
x

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)

n1n2

A([n1, n2]) +O
(
xε + xMα0−2+εN2β0+ε

)
.

Follwing Iwaniec’s method for W (x;M,N) as far as we can, we obtain

W (x;M,N) =
∑

n1,n2<N

bn1bn2T
∗(n1, n2;x,M) +O

(
x1+ε

)
,

where to define T ∗(n1, n2;x,M) we need to first define the integers c and d. For integers
l1, l2 <

x
M

, let 0 ≤ c < [n1, n2] be the solution to

c ≡ l1

(
mod

n1

(n1, n2)

)
c ≡ l2

(
mod

n2

(n1, n2)

)
c ≡ l1 (mod (n1, n2)) ,

and let

d :=
(n1, n2)

(n1, n2, l1 − l2)
.
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With the above definitions, we have
(2.14)

T ∗(n1, n2;x,M) :=
∑

l1,l2<
x
M

l1≡l2(mod (2,n1,n2))

∑
0≤µ<d
(µ,d)=1

∑
0≤v<d

G(µl1+v)≡0(mod d)
G(µl2+v)≡0(mod d)

∑
M<m<M1,(m,n1n2)=1

m≡µ(mod d),cm≤Ω<(c+1)m
Ω≡µl1+v(mod d),G(Ω)≡0(mod m[n1,n2])

1,

where M1 = min
(

2M, x
l1
, x
l2

)
. The innermost sum in (2.14) is precisely

P

(
M1,M ; [n1, n2], d, µ, µl1 + v,

c

[n1, n2]
,
c+ 1

[n1, n2]

)
,

so Lemma 4 implies that

(2.15)

T ∗(n1, n2;x,M) =
A([n1, n2])ρ([n1, n2])

[n1, n2]

∑
l1,l2<

x
M

l1≡l2(mod (2,n1,n2))

M1 −M
ρ(d)φ(d)

∑
µ,v

1

+O
(
x2Mα0−2+εN2β0+ε

)
.

The sum
∑

µ,v 1 is counting the number of integers µ and v modulo d such that (µ, d) = 1

and G(µl1 +v) ≡ G(µl2 +v) ≡ 0 (mod d). This is the same as the number of choices of µl1 +v
and µl2 + v such that G(µl1 + v) ≡ G(µl2 + v) ≡ 0 (mod d) and their difference, µ(l1 − l2),
is invertible modulo d. Since d is squarefree and the number of solutions is multiplicative in
d, there are exactly ρ(d)ψ(d) ways of doing this, where ψ(d) is the multiplicative function
defined by ψ(p) := ρ(p)− 1 for each prime p. Hence, the sum in (2.15) is equal to

φ((n1, n2))−1
∑

l1,l2<
x
M

l1≡l2(mod (2,n1,n2))

φ((n1, n2, l1 − l2))ψ

(
(n1, n2)

(n1, n2, l1 − l2)

)
(M1 −M).

Since ρ(p) = 0, 1, or 2, we must have that ψ(p) = 0,±1. We first note that if ψ(p) = −1
for some p | [n1, n2], then ρ(p) = 0 and so T ∗(n1, n2;x,M) would then be 0. We therefore
assume that ψ(p) 6= −1 and evaluate T ∗(n1, n2;x,M).

Let n | (n1, n2) be maximal such that ψ(n) = 1, and let n0 = (n1,n2)
n

. Since we have

ψ

(
(n1, n2)

(n1, n2, l1 − l2)

)
= ψ

(
n0

(n0, l1 − l2)

)
,

it follows that ψ
(

(n1,n2)
(n1,n2,l1−l2)

)
= 0 unless n0 | (l1 − l2). Hence, we consider

1

φ((n1, n2))

∑
l1,l2<

x
M

l1≡l2(mod n0)

φ((n1, n2, l1 − l2))

ψ
(

(n1,n2,l1−l2)
n0

) (M1 −M),

which, by using the fact that (n1, n2, l1 − l2) = n0(n, l1 − l2), is given by

1

φ(n)

∑
l1,l2<

x
M

l1≡l2(mod n0)

φ((n, l1 − l2))(M1 −M).
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We now have that, letting ξ := µ ∗ φ,∑
0<l1<l2

l1≡l2(mod n0)

φ((n, l1 − l2)) =
∑

0<l1<l2
l1≡l2(mod n0)

∑
t|(n,l1−l2)

ξ(t)

=
l2
n0

∑
t|n

ξ(t)

t
+O (φ(n)) =

l2φ(n)ρ(n)

n0n
+O (φ(n)) ,

where the last equality follows from the evaluation of
∑

t|n
ξ(t)
t

on primes. We are thus led
to consider ∑

l2<
x
M

l2

(
min

(
2M,

x

l2

)
−M

)
=

x2

4M
+O(x).

Inserting these estimates into (2.15), we now see that

T ∗(n1, n2;x,M) =
x2

2M

(
A([n1, n2])

ρ([n1, n2])

n1n2

ρ(n)

)
+O

(
xN ερ(n1)ρ(n2)

n1n2

+ x2Mα0−2+εN2β0+ε

)
.

Hence, we have

W (x;M,N) =
x2

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)

n1n2

ρ(n)

ρ((n1, n2))
A([n1, n2])

+O
(
x1+ε + x2Mα0−2+εN2+2β0+ε

)
.

Since primes p | n0 satisfy ψ(p) = 0 and hence ρ(p) = 1, we have that ρ((n1, n2)) = ρ(n).
This implies the required estimate, that

(2.16)
W (x;M,N) =

x2

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)

n1n2

A([n1, n2])

+O
(
x1+ε + x2Mα0−2+εN2+2β0+ε

)
.

Inserting the estimates (2.12), (2.13), and (2.16) into (2.8), we see that the main terms
cancel, and we obtain that

(2.17)
∑

M<m<2M

B(x;m,N)2 �
(
x+ x2Mα0−2N2+2β0

)
xεM εN ε.

Returning to the statement of the lemma, let N = xγ0−γ1ε. With this choice of N , it
suffices to show for any M < x1−8ε that∑

M<m<2M

|B(x;m,N)| � x1−3ε/2.

If M < x1−γ0−ε, the trivial estimate

|B(x;m,N)| ≤ ρ(m)
∑
n<N

ρ(n)� ρ(m)N

yields the desired result.
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If M > x1−γ0−ε, we use the estimate (2.17) in equation (2.7), and obtain∑
M<m<2M

|B(x;m,N)| �
(

(Mx)1/2 + xM
α0−1

2 N1+β0
)
xεM εN ε

� x1−3ε/2

by our choice of M < x1−8ε and N = xγ0−γ1ε. �

Armed with Lemma 3, we are now able to acquire the desired estimate for the sifting
functions S(Aq, u).

Lemma 5. If z < xλ/2r, then for any ε > 0 and x sufficiently large, we have

∑
q<x1−ε

(q,P (zq))=1

cqS(Aq, zq) < V (z)x

 ∑
q<x1−ε

(q,P (zq))=1

cq
ρ(q)

q
F

(
(1 + γ0) log x− log q

log zq

)
log z

log zq
+Olog z(ε)

 ,

with γ0 as defined in Lemma 3, provided that for each q, z ≤ zq < xλ/2r and 0 ≤ cq ≤ 1.

This lemma is essentially the same as Proposition 2 in [8], so we present it without proof.
We obtain a lower bound for the sum in Lemma 5 by replacing F with f .

2.3. Proof of Theorem 1. With Lemma 5 at our disposal, we obtain a lower bound for
the size of the set

{1 ≤ n < x : G(n) ∈ P2}.
We wish to apply Lemma 2 and Lemma 5 to equation (2.5) to obtain a lower bound for

W (A, z). We may do this for each term in (2.5) but the short sum∑
x1−ε≤p<x

(
1− log p

λ/2 log x

)
S(Ap, z).

However, in this case, we make the estimate

S(Ap, z)�
x

p log(x/p)
,

yielding the bound O
(

εx
log x

)
. For notational convenience, set

α := 1 + γ0 and γ :=
log z

log x
.

By partial summation, we obtain

W (A, z) > V (z)x

(
f

(
α

γ

)
+

[∫ 1
2

γ

∫ u

γ

u− t
1

γ

t
f

(
α− u− t

t

)
dt

t

du

u

−
∫ 1

2

γ

(
(1− 2u)

γ

u
F

(
α− u
u

)
+ uF

(
α− u
γ

))
du

u

−
∫ 1

1
2

(1− u)F

(
α− u
γ

)
du

u

]
− ε

)
=: V (z)x(W − ε),
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where we have let λ tend to 2, which is permitted by continuity. Since ΓG 6= 0, we have that
V (z) � log−1 x by Mertens’ Theorem and we wish to show that W > 0.

We observe that W decreases monotonically as α increases from 1, so we wish to find
γ < 1

2
such that W |α=1 > 0. However, we will not immediately substitute α = 1 into the

above formula. Instead, we will choose γ = α
6

and take the limit as α tends to 1 from the
right. Using that

sF (s) = 2eC
(

1 +

∫ s−1

2

log(u− 1)
du

u

)
if 3 ≤ s ≤ 5, and

sf(s) = 2eC
(

log(s− 1) +

∫ s−1

3

∫ t−1

2

log(u− 1)
du

u

dt

t

)
if 4 ≤ s ≤ 6, we obtain

W =
αeC

3

(
log

(
5

6
α

)
− α− 1

α
log(α− 1)

−
∫ 4

2

[
t log

(
6(t+ 1)

5(t+ 2)

)
+ (t+ 1) log

(
1− t

5

)]
log(t− 1)

t(t+ 1)
dt

)
.

Upon taking the limit α→ 1+, we see that

W1 =
eC

3

(
log

(
5

6

)
−
∫ 4

2

[
t log

(
6(t+ 1)

5(t+ 2)

)
+ (t+ 1) log

(
1− t

5

)]
log(t− 1)

t(t+ 1)
dt

)
,

which a numerical computation reveals to be positive.

3. An equidistribution result for the congruence G(x) ≡ 0 (mod m)

Here we prove Lemma 4, an equidistribution result for the roots of the congruence G(x) ≡
0 (mod m), where G(x) is any irreducible quadratic polynomial. The proof of Theorem 1
is complete once this lemma is proved. Before we can do this, however, we need a result

concerning the Dirichlet series L(ψ, s) :=
∑∞

m=1
ψ(m)
ms

, where ψ = ρ ∗ µ and ρ(m) is the
number of incongruent solutions to G(x) ≡ 0 (mod m).

Lemma 6. The series L(ψ, s) converges to a positive real number at s = 1.

Proof. If D is the discriminant of G(x), then, by Hensel’s Lemma, we can express the Euler
product for L(ψ, s) as

L(ψ, s) = λD(s)
∏
p-D

(
1 +

ψ(p)

ps

)
=: λD(s)L0(ψ, s),

where λD(s) is the product arising from primes p | D. Since it is a finite product, it will have
no bearing on the convergence of L(ψ, 1). Thus, we are only concerned with the convergence
of L0(ψ, 1). Assuming that s is tending to 1 in the half-plane <(s) > 1, we have that

log (L0(ψ, s)) =
∑
p-D

log

(
1 +

ψ(p)

ps

)
=
∑
p-D

ψ(p)

ps
+O

∑
p-D

1

p2<(s)−ε

 =
∑
p-D

ψ(p)

ps
+O(1).
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Since ρ(p) can be interpreted Galois theoretically and depends only on the conjugacy class C
of Frobp in Gal(G), we have, letting Gal(G)# denote the set of conjugacy classes of Gal(G)
and recalling that ψ(p) = ρ(p)− 1,∑

p-D

ψ(p)

ps
=

∑
C∈Gal(G)#

(ρ(C)− 1)
∑

Frobp∈C

p−s

=
∑

C∈Gal(G)#

(ρ(C)− 1)
#C

#Gal(G)
log

(
1

s− 1

)
+ θ(s),

where θ(s) is holomorphic for <(s) ≥ 1. The last equality follows from the Chebotarev
Density Theorem (for example, see Proposition 1.5 of [14]). The value of ρ(C) is the number
of roots of G(x) in C fixed by elements of C, so letting Fix(C) (resp. Fix(σ), for σ ∈ Gal(G))
be the number of fixed points of an element of C (resp. the number of fixed points of σ), we
have that ∑

C∈Gal(G)#

#C · (ρ(C)− 1) =
∑

C∈Gal(G)#

#C · Fix(C)−#Gal(G)

=
∑

σ∈Gal(G)

Fix(σ)−#Gal(G) = 0,

by Burnside’s Lemma. Hence, we see that log (L0(ψ, s)) = O(1) as s tends to 1. Thus, the
infinite product converges and L0(ψ, 1) exists, whence L(ψ, 1) does as well. The fact that
L(ψ, 1) is positive and real comes immediately from its Euler product and the definition of
ψ(m). �

We will also need a lemma of Iwaniec [8, Lemma 7] on the approximation of the charac-
teristic function χI(t) of the interval I := [α, β) ⊆ [0, 1) by Fourier series.

Lemma 7 (Iwaniec). Let 2∆ < β − α < 1 − 2∆. There exist two functions A(t) and B(t)
such that

|χI(t)− A(t)| = B(t)

and

A(t) = β − α +
∑
h6=0

Ahe(ht)

B(t) = ∆ +
∑
h6=0

Bhe(ht),

with Fourier coefficients Ah and Bh satisfying

(3.1) |Ah|, |Bh| ≤ min

(
1

|h|
,
∆−2

|h|3

)
=: Ch.

Armed with Lemmas 6 and 7, we now prove the main result of this section, which is a
generalization of Iwaniec’s Lemma 4 [8], and is the precise statement of our Lemma 4. For
a squarefree integer q we define

(3.2) A(q) :=
φ(q)

q

L(ψ, 1)

Lq(ψ, 1)
,
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where φ(n) is Euler’s totient function,

(3.3) Lq(ψ, 1) :=
∏
p|q

(
1 +

ψ(p)

p
+ . . .+

ψ(prp)

prp

)
,

and rp is the smallest integer such that ψ(pk) = 0 for all k > rp. We note that rp exists as a
consequence of Hensel’s Lemma because G(x) is irreducible.

Lemma 8. Let q be a squarefree number, d an odd divisor of q, µ an integer prime to d,
and ω a root of G(x) modulo d. Furthermore, let M < M1 < 2M and 0 ≤ α < β < 1. Let
P (M1,M ; q, d, µ, ω, α, β) denote the number of pairs of integersm,Ω such thatM < m < M1,
(m, q) = 1, m ≡ µ (mod d), α ≤ Ω

mq
< β, G(Ω) ≡ 0 (mod mq), and Ω ≡ ω (mod d). Then

there are constants α0 < 1 and β0 such that, for every ε > 0,

P (M1,M ; q, d, µ, ω, α, β) = (β − α)(M1 −M)ρ
(q
d

) A(q)

φ(d)
+O

(
Mα0+εqβ0+ε

)
.

Proof. By Lemma 7, we have that
(3.4)

P (M1,M ; q, d, µ, ω, α, β) = (β − α)
∑

M<m<M1,(m,q)=1,m≡µ(mod d)
0≤Ω<mq,G(Ω)≡0(mod mq),Ω≡ω(mod d))

1

+O

(
ρ(q)∆M +

∑
h6=0

Ch

∣∣∣∣∣ ∑
M<m<M1,(m,q)=1,m≡µ(mod d)

0≤Ω<mq,G(Ω)≡0(mod mq),Ω≡ω(mod d)

e

(
hΩ

mq

) ∣∣∣∣∣
)
.

By the Chinese Remainder Theorem, the sum in the main term above is given by

ρ
(q
d

) ∑
M<m<M1

(m,q)=1
m≡µ(mod d)

ρ(m) = ρ
(q
d

) ∑
a≤T

(a,q)=1

ψ(a)
∑

M
a
<b<

M1
a
,(b,q/d)=1

b≡µā(mod d)

1

+ρ
(q
d

) ∑
b<2M1/2

(b,q)=1

∑
max(Mb ,T)<a<M1

b

a≡µb̄(mod d),(a,q/d)=1

ψ(a).

If (a,D) = 1, then ψ(a) =
(
D
a

)
µ(a)2. Hence, we have that

ρ
(q
d

) ∑
M<m<M1

(m,q)=1
m≡µ(mod d)

ρ(m) = ρ
(q
d

) ∑
a≤T,(a,q)=1

ψ(a)

(
φ
(q
d

)M1 −M
aq

+O
(
φ
(q
d

)))

+O
(
ρ(q)φ(q)M

1
2

+ε
)

= ρ
(q
d

)
φ
(q
d

)M1 −M
q

∑
a≤T

(a,q)=1

ψ(a)

a
+O

(
ρ(q)φ(q)T 1+ε

)
+O

(
ρ(q)φ(q)M

1
2

+ε
)

= ρ
(q
d

)
φ
(q
d

)M1 −M
q

L(ψ, 1)

Lq(ψ, 1)
+O

(
ρ(q)φ(q)

(
M
φ(q)

q
T−1+ε + T 1+ε +M

1
2

+ε

))
.

By choosing T = M
1
2 , we see that the error above is O

(
M

1
2

+εq1+ε
)
.
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We now estimate the error term in (3.4), which is

O

(
ρ(q)∆M +

∑
h6=0

Ch

∣∣∣∣∣ ∑
M<m<M1,(m,q)=1,m≡µ(mod d)

0≤Ω<mq,G(Ω)≡0(mod mq),Ω≡ω(mod d)

e

(
hΩ

mq

) ∣∣∣∣∣
)
.

We will bound the above sum by an estimate of the form∑
M<m<M1,(m,q)=1,m≡µ(mod d)

0≤Ω<mq,G(Ω)≡0(mod mq),Ω≡ω(mod d)

e

(
hΩ

mq

)
� Mα2+εqβ2+ε

∑
h6=0

Ch
(
1 + hMα3+εqβ3+ε

)
τ(h)(3.5)

� Mα2+εqβ2+ε

(
1 +

Mα3+εqβ3+ε

∆

)
(log ∆)2,(3.6)

where α2 < 1, α3 < 1− α2, and β2 and β3 are real numbers, and the last equality has come
from (3.1).

If α3 < 0, we take ∆ = Mα3qβ3 , yielding that the error in equation (3.4) is

O
(
M1+α3+εqβ3+ε +Mα2+εqβ2+ε

)
,

in which case we may take α0 = max
(

1
2
, α2, 1 + α3

)
and β0 = max (1, β2, β3) . If α3 ≥ 0, we

take ∆ = M
α2+α3−1

2 qβ3 , yielding that the error in equation (3.4) is

O
(
M

1+α2+α3
2

+εqβ3+ε +M
1+α2+α3

2
+εqβ2+ε

)
,

and we may take α0 = max
(

1
2
, 1+α2+α3

2

)
and β0 = max (1, β2, β3) . Thus, it only remains to

establish (3.5).
We begin by removing the condition that (m, q) = 1 by Möbius inversion:∑
M<m<M1,(m,q)=1,m≡µ(mod d)

0≤Ω<qm,G(Ω)≡0(mod mq),Ω≡ω(mod d)

e

(
hΩ

mq

)
=
∑
l| q
d

µ(l)
∑

qM<E<qM1,E≡µq(mod dq),E≡0(mod lq)
0≤Ω<E,G(Ω)≡0(mod E),Ω≡ω(mod d)

e

(
hΩ

E

)
.

We will estimate the inner sum by using the theory of quadratic forms, a method originally
due to Hooley [7]. If c2 and E are relatively prime, there is a bijection between roots G(Ω) ≡
0 (mod E) and quadratic forms [E, y, z] of discriminant D, given explicitly by Ω = y−c1

2
c2,

where 0 ≤ c2 < E is the inverse of c2 modulo E. To apply this correspondence, therefore,
we first take out the part of E not relatively prime to c2, getting∑

qM<E<qM1,E≡µq(mod dq)
E≡0(mod lq),0≤Ω<E

G(Ω)≡0(mod E),Ω≡ω(mod d)

e

(
hΩ

E

)
=

∑∗

f≤T
(f,c1)=1

∑
0≤u<fc2
(u,c2)=1

∑
0≤v<f

G(v)≡0(mod f)
v≡ω(mod (d,f))

e

(
hvū

f

) ∑∗

E,Ω

e

(
hΩf̄

E

)

+O
(
(qM)1+εT−1+ε

)
,

where the star on the first summation indicates that f is composed only of primes dividing
c2, ū is the inverse of u modulo fc2, f̄ is the inverse of f modulo E, T is a parameter to
be specified later, and the star on the innermost summation indicates that E and Ω satisfy
qM
f

< E < qM1

f
, fE ≡ 0 (mod lq), fE ≡ µq (mod dq), E ≡ u (mod fc2), 0 ≤ Ω < E,

Ω ≡ ω
(

mod d
(d,f)

)
, and G(Ω) ≡ 0 (mod E).
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We are now able to use the bijection between roots of quadratic congruences and quadratic
forms. From the explicit construction described above, we have that∑∗

E,Ω

e

(
hΩf̄

E

)
=

∑∗

[E,y,z]

e

(
hfc2(y − c1)

2E

)

=
∑∗

[E,y,z]

e

(
h(y − c1)

2fc2E
− hū(y − c1)

2fc2

)
,

where we have transferred the congruence conditions on Ω to conditions on y. Now, suppose
the form [E, y, z] is equivalent to [a, 2b + c1, c] under the action of Γ0(fc2). In other words,

there is an

(
α β
γ δ

)
∈ Γ0(fc2) such that(
α γ
β δ

)(
a 2b+c1

2
2b+c1

2
c

)(
α β
γ δ

)
=

(
E y

2
y
2

z

)
,

where

Γ0(fc2) =

{(
α β
γ δ

)
∈ SL2(Z) : β ≡ 0 (mod fc2)

}
.

Then we have that

(3.7) E = aα2 + (2b+ c1)αγ + cγ2 =: Eα,γ,

and

(3.8) y = 2aαβ + (2b+ c1)(αδ + βγ) + 2cγδ.

Hence, we see that
y − c1

2
= aαβ + cγδ + b(αδ + βγ) + c1βγ,

from which it follows that

α
y − c1

2
= βEα,γ + cγ + bα.

Thus, we have that

h(y − c1)

2fc2E
− hū(y − c1)

2fc2

=
hβ

fc2α
+
h(cγ + bα)

fc2αEα,γ
− hū(βEα,γ + cγ + bα)

fc2α

≡
h
((
fc2fc2 − 1

)
cūγ − fc2fc2γ̄

)
fc2α

+
h(cγ + bα)

fc2αEα,γ
− hbū

fc2

(mod 1)

=:
h
((
fc2fc2 − 1

)
cūγ − fc2fc2γ̄

)
fc2α

+ hφα,γ,

where γ̄ and fc2 are the inverses of γ and fc2 modulo α, respectively. To simplify notation,
we denote by θα,γ the quantity on the right hand side of the final equation. We note that
we may obtain a similar expression for θα,γ with γ in the denominator. With this notation,
we have that

(3.9)
∑∗

E,Ω

e

(
hΩf̄

E

)
=

∑′

Q=[a,2b+c1,c]

∑∗

α,γ

e (θα,γ) ,

where the outer sum runs over a set of representatives of quadratic forms Q = [a, 2b+ c1, c]
of discriminant D under the action of Γ0(fc2), and the inner sum runs over coprime integers
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α and γ such that qM
f
< aα2 + (2b + c1)αγ + cγ2 < qM1

f
, restricted to one representation of

the form (3.7) and (3.8), and satisfying

(3.10)

fEα,γ ≡ 0 (mod lq) ,
fEα,γ ≡ µq (mod dq) ,
Eα,γ ≡ u (mod fc2) , and(

1−ūEα,γ
c2

)
(cγ + bα)− αω ≡ 0

(
mod d

(d,f)

)
.

If either α or γ is fixed, the number of simultaneous soltuions to these congruences, cG, is
bounded by (q, c)τ(q)(fc2)

1
2 . Since c = O(1) if G(x) is monic, we have that cG is O(qε) if

G(x) is monic and O(q1+εf
1
2 ) otherwise.

Returning to (3.9), we now break into two cases, depending on the sign of D. If D is
negative, then the forms [a, 2b+ c1, c] are positive definite, and we may write

(3.11)
∑∗

E,Ω

e

(
hΩf̄

E

)
=

∑′

Q=[a,2b+c1,c]

1

|ΓQ|
∑∗

α,γ

e (θα,γ) ,

where the summation over α and γ is no longer restricted to one representation of (3.7) and
(3.8) and ΓQ is the isotropy subgroup of Q in Γ0(fc2). We consider this case completely
before handling the indefinite case, D > 0.

Since the number of reduced forms is finite, we are primarily concerned with estimating∑∗

α,γ

e (θα,γ) =
∑∗

|γ|<|α|

e (θα,γ) +
∑∗

|α|<|γ|

e (θα,γ) .

These two sums can be handled in the same way, so we will only provide details for the first.
In this case, we have that
(3.12)∣∣∣∣∣∣

∑∗

|γ|<|α|

e (θα,γ)

∣∣∣∣∣∣� cG
∑
α

sup
λ,Λ

∣∣∣∣∣∣
∑∗

γ≡λ(mod Λ)

e

(
h
((
fc2fc2 − 1

)
cūγ − fc2fc2γ̄

)
fc2α

+ hφα,γ

)∣∣∣∣∣∣ .
We will use partial summation to handle this inner sum. To do so, we note that

(3.13) φα,γ − φα,γ+1 �
max(|a|, |b|, |c|)
|α|qM

.

We will also need the following estimate for incomplete Kloosterman sums, which can be
derived from Weil’s bound via the method of completion.

Lemma 9. If u, v, and s are integers and if 0 < r2 − r1 < 2s, then, for any integers λ and
Λ, we have that ∑

r1<r<r2,(r,s)=1
r≡λ(mod Λ)

e

(
ur + vr̄

s

)
� s

1
2

+ε(u, v, s)
1
2 .
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Now, by using Lemma 9 and (3.13) with partial summation in (3.12), we get that∣∣∣∣∣∣
∑∗

|γ|<|α|

e (θα,γ)

∣∣∣∣∣∣ � cGq
1
4

+εM
1
4

+εf
1
4

(
1 +

hmax(|a|, |b|, |c|)
qM

)∑
α

(α, h)
1
2

� cGq
3
4

+εM
3
4

+εf−
1
4

+ε

(
1 +

hmax(|a|, |b|, |c|)
qM

)
τ(h).

We obtain the same estimate for
∑∗
|α|<|γ| .

If G(x) is monic, then max(|a|, |b|, |c|) � |D| 12 = O(1) by the theory of reduced forms
for SL2(Z)(= Γ0(1)). Since the number of reduced forms is finite and depends only on the
discriminant, we then have that∑∗

E,Ω

e

(
hΩ

E

)
= O

(
q

3
4

+εM
3
4

+ε

(
1 +

h

qM

)
τ(h)

)
.

The same estimate holds for
∑

m,Ω e
(
hΩ
mq

)
, establishing (3.5).

If G(x) is not monic, by considering the coset representatives of Γ0(fc2) in SL2(Z), which
can be taken modulo fc2, we obtain max(|a|, |b|, |c|) = O(f 2), from which it follows that∑∗

E,Ω

e

(
hΩ

E

)
� q

7
4

+εM
3
4

+εf
1
4

+εHD(fc2)

(
1 +

hf 2

qM

)
τ(h),

where HD(fc2) denotes the number of reduced forms of discriminant D with respect to the
action of Γ0(fc2). By again considering the coset representatives of Γ0(fc2) in SL2(Z), we
see that

HD(fc2) ≤ HD(1)[SL2(Z) :Γ0(fc2)]� f 1+ε.

Hence, we have that∑
m,Ω

e

(
hΩ

mq

)
� (qM)1+εT−1+ε + q

7
4

+εM
3
4

+ετ(h)
∑∗

f≤T

∑
(u,fc2)=1

ρ(f)HD(fc2)f
1
4

+ε

(
1 +

hf 2

qM

)

� (qM)1+εT−1+ε + q
7
4

+εM
3
4

+εT
9
4

+ετ(h)

(
1 +

hT 2

qM

) ∑∗

f≤T

1

� (qM)1+εT−1+ε + q
7
4

+εM
3
4

+εT
9
4

+ετ(h)

(
1 +

hT 2

qM

)
,

where, on the last line, we have used that there are O(T ε) values of f ≤ T whose prime

divisors all divide c2. Upon choosing T = q−
3
13M

1
13 , we see that (3.5) holds, with∑

m,Ω

e

(
hΩ

mq

)
� q

16
13

+εM
12
13

+ε
(

1 + hq−
19
13M− 11

13

)
τ(h).

We now consider the indefinite case (i.e. when D > 0). To deduce (3.5) from the sum in
(3.9), we apply the theory of Pell-type equations. If D ≡ 0 (mod 4), let

u2 − D

4
v2 = 1
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be chosen such that τ := u+ v
√

D
4

is minimal with τ > 1. If τm = um + vm

√
D
4

, let k = kfc2
be the smallest positive integer such that vk ≡ 0 (mod fc2). If D ≡ 1 (mod 4), let

u2 + uv − D − 1

4
v2 = 1

be chosen such that τ := u + v
(

1+
√
D

2

)
is minimal with τ > 1. If τm = um + vm

(
1+
√
D

2

)
,

we again let k be the smallest positive integer such that vk ≡ 0 (mod fc2).
With this notation, since we may take a > 0, there is a unique representative of (3.7) and

(3.8) satisfying α > 0 and

− 2a(τ k − 1)

b+ (τ k + 1)
√
D
α < γ ≤ 2a(τ k − 1)

(τ k + 1)
√
D − b

α.

We apply the same techniques as in the positive definite case and find that∑∗

E,Ω

e

(
hΩ

E

)
� cGq

3
4

+εM
3
4

+εf
9
4

+εHD(fc2)

(
1 +

hf 2

qM

)
τ(h),

from which we derive that∑
m,Ω

e

(
hΩ

mq

)
� q

3
4

+εM
3
4

+ε

(
1 +

h

qM

)
τ(h)

if G(x) is monic, and∑
m,Ω

e

(
hΩ

mq

)
� q

8
7

+εM
20
21

+ε
(

1 + hq−
9
7M− 18

21

)
τ(h)

if G(x) is not monic. This establishes (3.5).
�

References

[1] P. T. Bateman and R. A. Horn. A heuristic asymptotic formula concerning the distribution of prime
numbers. Math. Comp., 16:363–367, 1962.

[2] V. Bouniakowsky. Nouveaux théorèmes relatifs à la distinction des nombres premiers et à la
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