UNEXPECTED BIASES IN THE DISTRIBUTION OF CONSECUTIVE
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ABSTRACT. While the sequence of primes is very well distributed in the reduced residue
classes (mod ¢), the distribution of pairs of consecutive primes among the permissible ¢(q)?
pairs of reduced residue classes (mod ¢) is surprisingly erratic. This paper proposes a
conjectural explanation for this phenomenon, based on the Hardy-Littlewood conjectures.
The conjectures are then compared to numerical data, and the observed fit is very good.

1. INTRODUCTION

The prime number theorem in arithmetic progressions shows that the sequence of primes
is equidistributed among the reduced residue classes (mod ¢). If the Generalized Riemann
Hypothesis is true, then this holds in the more precise form
m(z;q,a) = li() + O(z'/%*9),  where li(z) ::/
?(q) 2
and 7(x;q,a) denotes the number of primes up to x lying in the reduced residue class

a (mod ¢q). Nevertheless it was noticed by Chebyshev that certain residue classes seem to be
slightly preferred: for example, among the first million primes, we find that

m(10;3,1) = 499,829 and  7(xg;3,2) = 500,170, 7(xo) = 10°.

dt
logt’

Chebyshev’s bias is beautifully explained by the work of Rubinstein and Sarnak [15] (see
[7] for a survey of related work) who showed (in a certain sense and under some natural
conjectures) that 7(z;3,2) > m(x;3,1) for 99.9% of all positive .

What happens if we consider the patterns of residues (mod ¢) among strings of consecutive
primes? Let p, denote the sequence of primes in ascending order. Let » > 1 be an integer,
and let a = (a1, ay,...,a,) denote an r-tuple of reduced residue classes (mod ¢). Define

m(x;q,a) = #{pn < T : Puyic1 = a; (mod ¢q) for each 1 < i <r}

which counts the number of occurrences of the pattern a (mod g) among r consecutive
primes the least of which is below . When r > 2/ little is known about the distribution
of such patterns among the primes. When r = 2 and ¢(q) = 2 (thus ¢ = 3, 4, or 6),
Knapowski and Turdn [9] observed that all the four possible patterns of length 2 appear
infinitely many times. The main significant result in this direction is due to D. Shiu [16]
who established that for any ¢ > 3, a reduced residue class a (mod ¢), and any r > 2, the
pattern (a,a,...,a) occurs infinitely often. Recent progress in sieve theory has led to a new
proof of Shiu’s result (see [2]), and moreover in this particular situation Maynard [11] has
shown that m(x;q, (a,...,a)) > m(x).

Despite the lack of understanding of 7 (x; ¢, a), any model based on the randomness of the
primes would suggest strongly that every permissible pattern of r consecutive primes appears

roughly equally often: that is, if a is an r-tuple of reduced residue classes (mod q), then
1
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m(x;q,a) ~ w(x)/p(q)". However, a look at the data might shake that belief! For example,
among the first million primes (for convenience restricting to those greater than 3) we find

m(0;3,(1,1)) = 215,873, m(x0;3,(1,2)) = 283,957,
m(z0;3, (2,1)) = 283,957, 7(wo;3, (2,2)) = 216,213.

These numbers show substantial deviations from the expectation that all four quantities
should be roughly 250,000. Further, Chebyshev’s bias (mod 3) might have suggested a
slight preference for the pattern (2,2) over the other possibilities, and this is clearly not the
case.

The discrepancy observed above persists for larger x, and also exists for other moduli
q. For example, among the first hundred million primes modulo 10, there is substantial
deviation from the prediction that each of the 16 pairs (a, b) should have about 6.25 million
occurrences. Specifically, with 7(zo) = 108, we find the following.

a b |7m(xo;10,(a,b)) a b|m(xo;10,(a,b))
11 1,623,042 71 6,373,931
3 7,429,438 3 6,755,195
7 7,504,612 7 4,439,355
9 0,442,345 9 7,431,870
3 1 6,010,982 9 1 7,991,431
3 4,442 562 3 6,372,941
7 7,043,695 7 6,012,739
9 7,502,896 9 4,622,916

Apart from the fact that the entries vary dramatically (much more than in Chebyshev’s
bias), the key feature to be observed in this data is that the diagonal classes (a,a) occur
significantly less often than the non-diagonal classes. Chebyshev’s bias (mod 10) states that
the residue classes 3 and 7 (mod 10) very often contain slightly more primes than the residue
classes 1 and 9 (mod 10), but curiously in our data the patterns (3,3) and (7,7) appear less
frequently than (1,1) and (9,9); this suggests again that a different phenomenon is at play
here.

The purpose of this paper is to develop a heuristic, based on the Hardy-Littlewood prime
k-tuples conjecture, which explains the biases seen above. We are led to conjecture that
while the primes counted by 7(x;¢,a) do have density 1/¢(q)" in the limit, there are large
secondary terms in the asymptotic formula which create biases toward and against certain
patterns. The dominant factor in this bias is determined by the number of i for which
a;+1 = a; (mod q), but there are also lower order terms that do not have an easy description.

Main Conjecture. With notation as above, we have

. ~ i(z) ~loglogx . 1 1
7T([L‘, q, a) - qb(q)r (1 + Cl(q’ a) 1ng + 02(Q7 a) IOgZL‘ + O((log $)7/4>>7

where

¢(g) (r—1

ci(g;a) = T<¢ 7) —#{1<i<r:ia=ain (modq)}>7

and when r = 2 the constant co(q;a) is given in (2.23), while if r >3

r—1

ca(g;a) = Zcz(q; (@i, @iv1)) + M il(% — #{i:a; = aipj41 (mod Q>}>

P 2 HJ ()
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In general, the quantity c(q; a) seems complicated, but there are some situations where it
simplifies. For example, if a = (a,a) for a reduced residue class a (mod ¢), then regardless
of the choice of a we have

(1.1) es(q: (a, @) = ¢(q) log(q/2m) +log2m  ¢(q) Z log p

2 2 p—1

plg

We can also show that c(q; (a, b)) = ca(q; (—b, —a)) for any two reduced residue classes a and
b (mod ¢). Moreover, while ¢3(q; (a, b)) seems involved, the symmetric quantity cs(q; (a, b))+
c2(q; (b, a)) simplifies nicely: for distinct reduced residue classes a, b (mod ¢) we have

Alg/(g,b—a))
¢(q/(q,b—a))’

where A denotes the von Mangoldt function. In particular, this expression depends only on
the difference b — a.

(1.2) c2(q; (a,b)) + ea(q; (b, a)) = log(2m) — é(q)

Conjecture 1.1. Ifa and b are distinct reduced residue classes (mod q), then w(x;q, (a,b))+
(254, (b,a)) equals

li(z) loglog A(q/(q,b—a)) 1 1
2gb(q)2 (1 + 2logx * (log(27r) —9l0) o(q/(q,b—a)) ) 2logx i O((log w)7/4>>’
whereas 7(x;q, (a,a)) equals

li(x) ¢(q) — 1loglogz q log p 1 1
?(q)? <1_ 2 log = + (qb(q) log %+log 2m=0(q) %q: p— 1) 2logx JrO((log :v)7/4)>'

We give a few amusing consequences of the Main Conjecture. The famous biases w(z) <
li(x), or w(x;3,1) < 7w(x;3,2), or m(x;4,1) < w(x;4,—1) are known to be false infinitely
often. However we conjecture that the robust biases in pairs of consecutive primes (mod 3)
or (mod 4) may hold always and from the very start!

Conjecture 1.2. Let ¢ = 3 or 4, and let a be either 1 (mod q) or —1 (mod q). Then for all
x > 5, we have w(x;q, (a,—a)) > w(z;q, (a,a)). Indeed for large x we have

T

m(x;q, (a,—a)) — m(x;q, (a,a)) = g o) log <2§ log x) + O(W)

Given a prime ¢, the product of two consecutive primes prefers to be a quadratic non-
residue rather than a quadratic residue.

Conjecture 1.3. Let q be a fixed odd prime. For large x we have

> (5) () = gt (75) + ()

Pn>ST

The constants in the Main Conjecture also simplify dramatically if one only cares about
patterns exhibited by p, and p, . for k > 2.

Conjecture 1.4. If k > 2 and a and b are distinct reduced residues (mod q), then

o B i) 11 1
#{p, < x:p,=a (mod q),ppsr =b (mod q)} = Y (1+2(k5 ) logx+0<(loga:)7/4)>’
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while

@)/, olg)—1 1 1
n <X Py = Prak = d = <1— O< ))
#{p >x:p Ptk = a (mo Q)} ¢(q)2 2(]€ _ 1) log x + (log :L‘)7/4

Form a ¢(q) x ¢(q) transition matrix (with rows and columns indexed by reduced residue
classes) and the (a, b)-th entry being the probability that a prime p, = a (mod ¢) is followed
by pni1 = b (mod ¢). Then Conjecture 1.4 shows that the corresponding transition matrix
going from p,, to p,. 2 is not the square of the transition matrix going from p,, to p,,1. Thus
the primes (mod ¢) are not Markovian, and this may also be seen directly from the Main
Conjecture by the formula given for cy(¢; a) when r > 3 (which is used to derive Conjecture
1.4).

The ideas that lead to the Main Conjecture imply that there will be symmetries between
the number of occurrences of different patterns.

Conjecture 1.5. Given a and q as above, define a°® = (—a,, —a,_1,...,—ay). For large x
we have
m(x; q,a) = w(x; q, a°P) + O(z/*).

Ezxample. We find

(107, (1,6,3)) = 24,344,117
and

m(10";7,(4,1,6)) = 24,349,025,
while the nearest number of occurrences of another pattern is

(101 7,(6,2,1)) = 24,570,765.

If the modulus is a prime power, there are additional symmetries.

Conjecture 1.6. Let q be a prime and let v > 2. Ifa = (a1,...,a,) and b = (by,...,b,)
are such that a; = by (mod q) and a;11 — a; = biwq — b; (mod ¢°) for each 1 <i < r, then

m(x;¢",a) = 7(r;¢°, b) + O(x/*).

In particular, if a is odd, then, up to an error O(z'/?*¢), n(x;2%, (a,b)) depends only on
b—a (mod 2").

Ezxample. We find
7(10':8, (1,3)) = 278,676,326, m(10':8,(3,5)) = 278,696,997,
7(10':8,(5,7)) = 278,692,843, and m(10':8,(7,1)) = 278,681,776.

In the direction of these conjectures, the earliest work we found is the paper of Knapowski
and Turdn [9] who “guess” that the events p, = a (mod 4) and p,,1 = b (mod 4) for the
four possibilities of a and b are “not equally probable.” However Knapowski and Turan go on
to suggest that 7(x;4,(1,1)) = o(n(z)), which is now definitively false by Maynard’s work
[11]. The paper [9] was published after the death of both authors, and perhaps they had
something else in mind, maybe along the lines of our Conjecture 1.2 above? More recently,
in Ko [10] numerical results observing the biases in the distribution of consecutive primes
for small moduli are given. The paper by Ash, Beltis, Gross and Sinnott [1] again observes
these biases in pairs of consecutive primes and initiates an attempt toward understanding
them based on the Hardy-Littlewood conjectures. The heuristic expression in [1] is a large
sum of singular series, and as the authors note, it is unclear from that expression whether
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7(x;q, (a,b)) tends to w(z)/¢(q)?* for large z. They also note symmetries akin to Conjectures
1.5 and 1.6 for pairs of consecutive primes.

In the Main Conjecture we expect that the remainder term O((logz)~"/*) is given by a
sum involving the zeros of Dirichlet L-functions (mod ¢). The main terms given in the Main
Conjecture are the same for all repeating patterns (a, a, . .., a); nevertheless numerically one
observes some deviations in the counts of such patterns, and we expect the lower order
fluctuations to account for these deviations. In addition to the contributions from zeros,
which we expect to be oscillating, there also appear to be non-oscillating lower order terms
of size (loglog z/logx)?, which may play a bigger role for the computable ranges of x. We
hope to understand these lower order terms in future work.

An initial guess for why there is a bias against the repeating patterns might be that, after
a prime occurs that is @ (mod ¢), all other classes have a chance to represent a prime before
a occurs again. However, a straightforward application of the Selberg sieve shows that the
number of primes for which p,.1 — pn < ¢ is O(z/log? z), which is of a smaller order of
magnitude than the bias predicted by the Main Conjecture.

Though we do not pursue this here, it should be possible to prove unconditional analogues

of the Main Conjecture in other settings, for example to numbers free of small prime factors
or for squarefree integers (in the latter case, the biases will be manifested already at the level
of the constant in the main term). More generally, analogous biases seem to arise for many
other sifted sets, for example in the sums of two squares. We also mention two other settings
in which large biases are seen: the distribution of prime geodesics for compact hyperbolic
surfaces into various homology classes (see the discussion at the end of [15]), and the recent
work of Dummit, Granville, and Kisilevsky [3] concerning the distribution of numbers that
are products of two primes.
Acknowledgements. The first author is partially supported by an NSF postdoctoral fel-
lowship, DMS 1303913. The second author is partially supported by the NSF, and a Simons
Investigator Award from the Simons Foundation. We would like to thank Tadashi Tokieda
whose lecture on “Rock, paper, scissors in probability” inspired the present work, James
Maynard for drawing our attention to [9], Paul Abbott for pointing us to [10], and Alexan-
dra Florea, Andrew Granville and Peter Sarnak for helpful comments.

2. THE HEURISTIC FOR r = 2

In this section we develop a heuristic explanation of the Main Conjecture in the case r = 2.
The heuristic (like several other conjectures about the primes, see for example [4, 6, 8, 13, 14])
is based upon the Hardy-Littlewood prime k-tuples conjecture. We begin by reviewing
quickly the Hardy-Littlewood conjectures and some related results, before proceeding to
develop an analogue suitable for understanding = (z;q, a).

The Hardy-Littlewood conjectures. Let H be a finite subset of Z and let 1p denote
the characteristic function of the primes. In a strong form, the Hardy-Littlewood conjecture

asserts that . p
Y 1/2+€
1o(n+ h) :6(H)/ W o',
2 1 , Togy)™

where the singular series G(H) is given by
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In our calculations, it will be important to understand the behavior of the singular series
“on average.” Here Gallagher [4] established that for any £ > 1 and as h — oo,

(2.1) > eH (h) Z—T

HC[1,h]
[H|=k

so that the singular series is 1 on average. A refined version of this asymptotic was established
by Montgomery and Soundararajan [13], who introduced the modified singular series

Go(H) = > (-1)MTI§(T),  sothat  S(H)= > &o(T)
TCH TCH

with &(0) = S4(0) = 1. The modified singular series &, arises naturally in the following
version of the Hardy-Littlewood conjecture (thinking of the elements of H as being small in
comparison to x):

N d 1/2+€
ST (trtn 1) - logn> 60(7-[)/2 —aogi)ml OV,

n<x heH

and the term 1/logn that is subtracted above arises naturally as the probability that the
“random number” n + h is prime Montgomery and Soundararajan showed that

(2.2) > Go(H ( hlogh + AR)¥/2 4 Oy (R** 1T+

HC[1,h]

H|=k
where gy is the k-th moment of the standard Gaussian (in particular, g, = 0 if k& is odd)
and A is a constant independent of k. This refines Gallagher’s asymptotic (2.1), and shows
that So(H) exhibits roughly square-root cancelation in each variable.
Modified Hardy-Littlewood conjectures. We need a slight modification of the Hardy-
Littlewood conjecture, taking into account congruence conditions (mod ¢). For any integer
q > 1 and a finite subset H of the integers, we define the singular series at the primes away

rom by #(H mod p) 1\ —IHl
S,(H) =[] (1 - T> (1 - 5) .

If a (mod q) is such that (h + a,q) = 1 for all h € H, then we expect that

[H] 1 [* d
(2.3) 3 Hlp(n+h)~6q(7{)<$> p /2 —(loggz//)m’

nEan(r<nic)d q) hen
where the factor (¢/¢(q))/*! arises because h + a is conditioned to be coprime to ¢ for all
h € H, and the factor 1/q arises since we are restricting n to one residue class (mod q).
In analogy with &p, it is also useful to define &,0(H) = Y7y (—1)"\16,(T), so that
Sy(H) = D 7cy ©q0(T). Once again the quantity &, arises naturally in the asymptotic
(conditioning (h 4 a,q) =1 for all h € H)

(2.4) > H(lp (n+h)— o )logn>N6%0(%)<$)ml/:( dy 7

q log y)™
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where the term ¢/(4(q) logn) being subtracted arises naturally as the probability that n+ h
is prime, conditioned on the fact that n 4+ A is coprime to q.

First steps toward the conjecture. Let a and b be two reduced residue classes (mod ¢),
and let h be a positive integer with h = b — a (mod ¢). We now formulate a conjecture
for the number of primes n < z with n = a (mod ¢) and such that the next prime after
n is n + h. The gaps between consecutive primes are conjectured to be distributed like a
Poisson process with mean ~ logz (and Gallagher showed that this follows from the Hardy-
Littlewood conjectures), and so h should be thought of as a parameter on the scale of log x.
With this in mind, we are interested in

> Lrmtpm+h) I (1-1pm+1))

n<z 0<t<h
n=a (mod q) (t+a,q)=1
q ~
25 = > 1pmipm+h) [] (1 . ip(n+ t)),
n<zx 0<t<h ¢(q) log(n + t)
n=a (mod q) (t+a,q)=1

where, for a variable n conditioned to be coprime to ¢, we set 1p(n) = 1p(n) —q/(6(q) logn).
Write also 1p(n) = ¢/(¢(q) logn) + 1p(n) and similarly for 1p(n -+ h), and then expand out
the product in (2.5): thus we arrive at (ignoring the small differences between log n, log(n+h)
or log(n +1))

(2.6)
q 2—|A|
SOy e Y ) () TT e
AC{OR}  TC[1,h—1] n<w ¢(q) logn te[l,h—1] ¢( logn/  ior
(t+a, q) teT n=a (mod q) (t+a,q)=1
t¢T
Given reduced residue classes a and b, and a positive h = b — a (mod ¢), we may write
(2.7) #{0<t<h: (t—i—a,q):l}:Mh—{—eq(a,b),
q
where €,(a, b) is independent of h. We also write for convenience
q
2.8 aly) =1— —————.
28) ) ¢(q)logy

Appealing now to the conjectured relation (2.4), we are led to hypothesize that the quantity
n (2.5) (and (2.6)) is
(2.9)

>y (—1)|TGq7O(AU7‘)<$ / ’ (ﬁ)”Ta(y)h¢<q>/q+sq<a,b>—mdy>.

AC{0,n}  TC[1,h—1] q)logy
(t+a,q)=1VteT

Before proceeding further, a few points are in order. Note that a(m)h‘f’(‘?)/ 7 is about e "/ log®
and this exponential decay in h is in keeping with the conjecture that gaps between consec-
utive primes are distributed like a Poisson process. Secondly, by replacing A and T above
with h — A and h — T, and noting also that €,(a,b) = €,(—b, —a) we may see that the
quantity (2.9) above does not change if we replace (a,b) by (—b, —a); this is an example of
the symmetry between 7(x; ¢, a) and m(z; ¢, a°?) noted in Conjecture 1.5. Similarly, under
the hypotheses of Conjecture 1.6, the conditions satisfied by h and 7T are exactly the same
for m(z;q,a) and w(z;q,b). Lastly, in arriving at (2.9) we have paid no attention to error
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terms, and moreover have used a uniform version of the Hardy-Littlewood conjecture, both
in terms of the size of the parameters in the set AU7T (this is relatively minor) and in terms
of the size of the set A U T. To mitigate the last point, we note that in expanding out
the inclusion-exclusion product in (2.5) we may obtain upper and lower bounds by stopping
after an odd or an even number of steps (as in Brun’s sieve for example); in this manner
only a mildly uniform version of the Hardy-Littlewood conjectures seems needed. For the
present we ignore these details, but it would be desirable to place the conjecture (2.9) on a
firmer footing and we intend to return to this in future work.

With conjecture (2.9) in hand, we have a conjecture for 7(z; ¢, (a,b)): namely, we sum the
quantity in (2.9) over all positive integers h = b — a (mod ¢). Thus, we expect that

2.10) ez (@) ~ < [l (o) Do)y
B q.J ¢(q) logy R
say, where
(2.11)
Dlabiy) = > > > ()TEAUT) (o) M a(yymoara
h>0  AC{0,h}  TC[lh—1] 7 ¢(q)a(y) logy
h=b—a (mod q) 7 (t+a,q)7:1Vt€T

Discarding singular series involving sets with three or more elements. We now
conjecture that only terms with A = T = () (which gives rise to the main term of li(x)/¢(q)?
for m(x; q, (a,b))), and | A|+|T| = 2 give significant contributions leading to the Main Conjec-
ture, and that all other terms contribute to 7(z; ¢, (a, b)) an amount O(z(loglog z)?/(log x)?).
To argue this, we will use as a guide the work of Montgomery and Soundararajan (2.2) which
shows that sums over singular series exhibit square-root cancelation in each variable.

Suppose for example that A = () and |7| = ¢ > 4 in (2.11). After summing over the
variable h, these terms may be thought of as (logy)'~* times an average of &,,(7) over /
element sets 7 whose elements are all of size about logy. The estimate (2.2) now suggests
that this contribution is < (loglogy)*?(logy)'~%/?, and since ¢ > 4 the final contribution
to m(z;q, (a,b)) is O(z(loglogz)?/(logx)?). If £ = 3 then the same argument — drawing on
(2.2) with k = 3 there, so that the main term there vanishes and the bound is O(h*/2~1/21+¢)
— indicates that such terms contribute to 7(z;q, (a,b)) an amount O(z(logxz)~>/2~1/21+¢)
which is already smaller than the secondary main terms claimed in the Main Conjecture.
We believe that when £ is odd, the work of Montgomery and Soundararajan can be refined
and the actual size of the sum in (2.2) is h*=1/2(log h)*+1)/2. We will pursue this in future
work, noting for the present that this expectation suggests that the terms with A = () and
|7] = 3 also make a contribution of O(z(loglogz)?/(logx)?).

When A = {0} or {h}, then a similar heuristic to the above shows that terms with |7 > 2
make a contribution to m(z; ¢, (a,b)) of O(x(loglogz)?/(logx)?). Finally if A = {0,h} and
|7| = ¢ > 1, then the contribution to (2.11) may be roughly thought of as (logy)=* times
an average of singular series &,0({0} U 71) where 7 (standing for 7 U {h}) runs over
¢ 4+ 1 element sets with elements of size logy. Since the singular series &, is translation
invariant, one can think of this last sum as being 1/(logy) times the average over ¢ + 2
element sets with all elements of size logy. After making this observation, we can draw on
(2.2) (with its proposed refinement for odd k) as earlier and this leads to the prediction
that the contribution to 7(z;¢, (a,b)) of terms with A = {0,h} and any non-empty 7 is

O(z(loglog x)?/(log z)3).
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Thus, discarding all terms with |A| + |T] > 3, we now replace the density D(a,b;y) in
(2.11) with

(212) D(CL, ba y) = D0<a7 b7 y) + Dl (CL, b) y) + D2(a7 ba y)a
where (keeping in mind that &, is 1 for the empty set, and 0 for a singleton)
(2.13) Do(a,biy) = > (14+6,0({0,h}))a(y)" @,
h>0

h=b—a (mod q)

(2.14)
q
Di(abiy) = —————— Y D (840({0,1}) + S0 ({t, h})aly) /7,
¢(q)a(y)logy i)

h=b—a (mod q) (t+a q)=
and
215) Dafabiy) = (5 ) Y S Sl bhay) 0l

¢(q)a(y) logy ’

h>0 1<t1<ta<h
h=b—a (mod q) (t;+a,q)=(t2+a,q)=1

Inserting this in (2.10), we thus conjecture that up to O(z(loglog x)?/(log x)?), there holds

T o €q(a,b)
(2.16) m(x;q,(a,b)) = ¢(Cf])2 /2 ((li/))g e (Do + D, + DQ)(CL, b; y)dy.

The main proposition. To evaluate the sums over two-term singular series above, we
invoke the following proposition whose proof we defer to the next section.

Proposition 2.1. Let ¢ > 2, and let v (mod q) be any residue class. For any positive real
number H define

Solqvi H) = > S,0({0,h})e "

h>0
h=v (mod q)

Then we may write

So(q,0; H) = ¢2(Z_) log H + Sg(q, 0) + quo(H) + O( ['-]—1-4-5)7
where
¢(q) qa ¢(q) logp 1
0 = ——Llog — — E 2
56(.0) 2q “®on 2q e P 1 + 2’

and for any v (mod q), the quantity Z,,(H) is described in (3.2) below, and satisfies the
bound Z, ,(H) = O(H~Y**¢), and which we conjecture to be O(H=3/*). Further, if (v,q) = d
with d < q, then

Solq, v H) = S5(q,v) + Zgo(H) + O(H ™),

where

oy 0@ AMafd) o
SO(qvv) - 2q (b(Q/d) BQ( )+ ¢<Q/d) X#XO(mZOd q/d)X( /d)L(()aX)L(LX)A%Xa
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with By(v) = % — g for 1 <wv < q and extended periodically for all v, and

] ()

p
plg

Completing the heuristic. Returning to our heuristic calculation, we will apply Proposi-
tion 2.1 with

o q 1 . q 1
(2.17) H = H(y) = "5 Togaly) logy — 2(g) " O(logy>'

We begin by simplifying a bit the expressions for Dy, D; and Ds, discarding terms of size
O(loglogy/ logy) which are negligible for the Main Conjecture. Thus, after summing the
geometric series and using (2.17),

H 1
Do=So(g.b—a;H)+ Y M= Solab—a; H) + -+ Byb—a) +o<ﬁ)
h=b—a (mod q)

_logy ' o 1 1
(218) = =24 Solg,b —a; H) + Byfb— a) 2¢(q)+0(1ogy>‘

The definition of D; involves two singular series &,0({0,t}) and &,¢(t,h). Consider the
terms arising from the second case. Replace S, ¢({t,h}) by &,0({0,7}) where r = h —t also
lies in [1,h — 1] and note that the condition (¢ 4+ a,q) = 1 becomes (r — b,q) = 1. Thus,
ignoring terms of size O(loglogy/logy), the second case in D; contributes

SalTony 2 Sw0r) T M=o 3 Sy v ).

log Yy r>0 h>r v (mod q
(r—b,q)=1 h=b—a (mod q) (v b,g)=

Arguing similarly with the first case, we conclude that

1 log log y
2.19 So(q,v; H) — So(q,v; H —|—O<—).
(2.19) Z : o (Zd (v )+ 02
v (mo v (mod q)
(v+a Q) (v—b,q)=1

Finally, note that

> My St = Y, S({0ta—tp) D, e

h=b—a (mod q) 1<t <to<h 1<t1<to<h h=b—a (mod q)
(t1+a,q)=1 (t1+a,q)=1 h>ta
(ta+a,q)=1 (ta+a,q)=1
H2

= Z Sg(q,vg—vl;H)+O(H10gH),

v1,v2 (mod q)

(v1,9)=1
(v2,9)=1
so that
1 log log y
(220) DQ = D) Z SQ(Q,UQ—Ul;H)+O(—>.
¢(q) v1,v2 (mod q) IOg Yy
(v1,9)=1
(v2,9)=1

Using Proposition 2.1 to evaluate (2.18), (2.19), and (2.20), and then inserting that in
(2.10) leads to the Main Conjecture. The term involving ¢;(q; (a, b)) arises from from terms
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involving Sy(q,0; H) which has a leading term of size log H while all other Sy(q,v; H) are
only of constant size. Thus isolating the —%Z) log H leading contribution to Sy(g,0; H) and
tracking its appearance in our expressions for Dy, D; and Dy gives

29 (10g 11)5(a = ) - 2(- M)logH) b (- MlogH)

2 @)\ 2 ol@)\ 2
¢(q) 1 log log y
= —(logl —— —0(a=0b ———= .
2q 18 Ogy)(¢(q) (a=1))+0( log y )
The term involving cs(g; (a, b)) is complicated, but follows straightforwardly from our work
(

above. Having already treated the term —2—2) log H term arising in Sp(g, 0), the contributions

leading to ¢2(q; (a, b)) come from the S§(g,v) terms in Proposition 2.1. We thus have

C2(Q§a) (CL?b) 1
—— =——"""4+5i(¢,b—a)+ B b—a———— Se(q,v)
y R A U R B 3
(v+a,q9)= 1
1 1
(2.21) — (— Z So(q,v ¢( B Z So(q,v2 —v1).
v(mod q 4 v1,v2 (mod q)
(v—b,9)= (v1,9)=1
(v2,9)=1

With C,, = L(0, x)L(1, x)A,, (which is zero unless y is an odd character), we may also
derive the following alternative expression:

¢2(g;a) _ log2m

+55(¢,0 —a) + By(b—a)

q 29
1 1 _
(222) AP IE D DI (D DENED DI (L
¢(q) dlq (b( ) X (mod d) u (mod d) u (mod d)
a>1 x(—1)=-1 (ug/d+a,q)=1  (ug/d—b,q)=1

If y is induced by the primitive character x*, then, writing x = xo,»Xx* for some m coprime
to the conductor of x*, we have
x = Cox- H(l —X"(p))

plm

Further, it is helpful to write ¢ = 92" with ¢y odd. If now Y is a character to an odd modulus
and ¢ is even, then

x(2)

Cox = 9 Coox-
Using these facts, it is possible to simplify the formula in (2.22) further, and obtain
log 27
e2(g: (a,5) = =2 +qss<q,b—a>+qB (b—a)
(2.23) - S 2 g pd Z Cann(X(b) = X(@)).
¢(QO) dl2o ¢ X (mod d)

For example, if ¢ is prime and a # b then

ex(gi(0.0) = 5108+ S 37 Co (R = )+ S (X0) ~ T@))).

x#x
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This completes our discussion of the Main Conjecture in the case r = 2, and the other
conjectures follow as simple consequences.

3. PROOF OF THE PROPOSITION

The proof follows along standard lines, and the closely related case of evaluating asymp-
totically >, ., 60({0,h})(H — h) is mentioned in [5] and treated in detail in [12]. We
will therefore be brief. Let y be a Dirichlet character modulo m|g; possibly x could be
imprimitive, or the principal character. Define, for Re(s) > 1,

X &,({0,1})
1 L ), 1 @y
—pfg( 2y M0-Gm 0-p) (250))
so that
(3.) > ({0, AP = - | F TG ds

We now note that

1 x(p)
F,\(s) = L(s, x) H (1 - ( + — 1)2>

_12 s—1 _
o p—12% pip

= L(s, )L +1.) ] (1 - %) 11 (1 _da —(px_(pi)/fSV)’

plg plq

which furnishes a meromorphic continuation of F,,(s) to Re(s) > —3 with possible poles at
s =0or s =1 in case y is principal. We may also express the above as

_ L(s,x)L(s +1,x) x(p)\ 1 2px(p)
a8 = 1555 H] <1 : F> lpg (1 T -1 -2+ x(p))>’

and now the final product above is analytic in Re(s) > —1, but for which the line Re(s) = —1
forms a natural boundary.

If x is non-principal, then by shifting the line of integration to Re(s) = —% +¢€ we find that
the quantity in (3.1) is L(0, x)L(1, x)Aqy + O(H~2*¢), with the main term coming from the
pole of I'(s) at s = 0. Moreover, we may even shift the line of integration to Re(s) = —1+¢
at the cost of picking up residues from the zeros of L(2s + 2,x?). The contribution from
these zeros is

Zin(H)= 3 Res (Fuuls)H'T(s)).
p, Re(p)>0" "
L(p:x*)=0
If we suppose that GRH holds for L(s, x?), that its zeros are simple, and that |L'(p, x?)| is
not too small so that (in view of the exponential decay of I'(s)) the sum over residues is

absolutely convergent, then we would expect that Z,, (H) is an oscillating term of size H -1,
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If x is principal, but m > 1, then F,,(s) has a pole at s = 1 with residue ¢(m)/m, but
there is no pole of F,, at s = 0 since L(s,xo) = sA(m) + O(s?) for s near 0. Therefore in
this situation we find

; Xo(h)e &, ({0, h}) = @H = %I)A(m) + Zyo(H) + O(H').

Finally if m = 1 (and x is naturally principal) the corresponding Fy , (s) has a simple pole
at s = 0 in addition to the pole at s = 1. Thus there is a double pole of the integrand in
(3.1), and computing residues we obtain that

1
Y e S, ({0,h}) = H ~ Gl [mg 2rH + Y ﬂ] + Zyo(H) + O(H*).
2q p—1 ’
h>1 pla
Since
H 1
> IS, ({0,h}) = Sola,vi H) + = + By(v) + O( - ).
q H
h=v (mod q)
our proposition follows, with
1
3.2 Zoo(H) = —— x(v/d)Z, (H/d).
(3.2) aw(H) o0/ d) > X(w/d)Zy(H/d)

X (mod gq/d)

4. MODIFICATIONS TO THE HEURISTICS WHEN 7 > 3

The ideas leading to the general case of the Main Conjecture are similar to those for r = 2,
and so we just give a brief sketch. For r > 3 and a = (a4,...,q,), we start by writing
m(x;q,a) as

r—1

2. > 17>(n)H [1P(n+h1+--~+hi)~

n<z hi,..shr—1>0 i=1
n=a1 (mod q) h;=a;11—a; (mod q)

H (1—1P(n+h1++h171+t)>i|

0<t<h;
(t+a2 7q):1

As before, we expand this out, invoke the Hardy-Littlewood conjectures, and then discard
all singular series terms except for the empty set and sets with two elements. This leads to

: I B q cq(2) _ dy z(log log x)?
mwig.a) = /2 é(q)" <1 ¢(q) 1ogy) (Do+ D1+ D) aiy) (logy) O< log® )

where ¢,(a) = ¢,(a1,a2) + - - - + ¢4(ar—1,a,) and Dy, Dy, and D, are certain smooth sums of
singular series. For Dy, we have (with H = H(y) as before)

Dy = Z e*(h1+-.-+hr—1)/H<1 + Z Sy0({0, hivy + -+ hj})>.

hiyeshr_1>0 0<i<j<r-—1
hi=a;+1—a; (mod q)

Notice that if 7 =7 + 1 in the inner summation, the resulting expression is (H/q)" 2 times
the analogous Dy term in our calculation for 7(x;q, (aj,a;4+1)). If j —i > 1, we will need to
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consider sums of the form
So(qviH) == > hFe "H&,4({0,h}),
h=v (mod q)
where k£ = 7 — ¢ — 1. This can be understood via contour integration as in Proposition 2.1;
a key difference is that for & > 1, we have S¥(q,v; H) = O(H*/2) unless v = 0, in which
case Sk(q,0; H) = —%‘?F(k)Hk 4+ O(H*=1/2). Using this to evaluate Dy, we find that it is
(up to O(H™?))

H' H™? A " Sh(q, aiair — ai H)
g + F o~ [SO(CL air1 — ai; H) + By(aip1 — a;) + ; LI HE ]
Hr_l HT_Q r—1 r—i—1 5 a; = a;
~ qr—l + Cf—_2 Z [So<q, i1 — Qg H) + Bq(aiﬂ - ai) — %Z) Z ( p +k+1)]7
i=1 k=1

and it is this last term which creates the additional bias (in c3(g,a)) against patterns with
a non-immediate repetition.
For Dy, up to O(H"™?2), we obtain a contribution of (H/q)""*(1 — (Z)(q logy)~! times

[y

1

[( Z + Z )So(q,v;H)+ Sg(q,vk!_;/jk;H)

1 (vtaj,9)=1  (v—a;jt1,9)=1 (v:q)=1

T

.

b
Il
—

J
r—1—j

Y et

(v,9)=1

S (D SRID VN ERAT L) iy

J=1  (vtaj,q)=1 (v—ajt1,9)=1

Finally from Dy we obtain (H/q)" (1 — @ logy) ™2 times

‘ Sk(qam-l—m;H)
Z SO QJUZ U17H>+ Z . k?'Hk >

J=1  (v1,9)= k=1 (v1,9)=1
(vz,tI): (v2,9)=1

9 r—2

r—1—k
~ (7’ - 1) So(q7v2 U17H) - ¢(2q>
q k
(”hq):l k=1
v2,q)=1

Assembling these contributions yields the Main Conjecture.

5. COMPARISON OF THE CONJECTURE WITH NUMERICAL DATA

We begin by comparing the Main Conjecture against the data for r = 2 and ¢ = 3 or 4. In
each of these cases, our conjecture is that

(5-1) m(;q,2) = 11(4@ (1 + 2l(jgx log (27T lqogx>> + O((logi)llﬂ)’

with the sign being negative if a; = as (mod ¢) and positive if not. However, in order
to obtain (5.1) in such a clean form, a number of asymptotic approximations were used
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throughout Section 2, and it is reasonable to expect that the unsimplified integral expression
(2.16) for 7(x; q,a) would provide a better fit to the data. Indeed, we find the following.

x m(x;3,(1,1)) | m(z;3,(1,2)) | | w(x;4,(1,1)) | m(x;4, (1,3))
Actual | 10° [ 1.132-107 1.411-107 1.141 - 107 1.401 - 107
(2.16) 1.137-107 | 1.405 - 107 1.148-107 | 1.395- 107
(5.1) 1.156 - 107 | 1.387 - 107 1.164 - 107 | 1.378 - 107
101091 1.024 - 108 1.251 - 108 1.032 - 108 1.244 - 108
1.028 - 108 1.247 - 108 1.037 - 108 1.239 - 108
1.042 - 108 1.233 - 108 1.049 - 108 1.226 - 108
101 19.347- 108 1.124 - 107 9.412- 108 1.118 - 107
9.383- 108 1.121 - 10° 9.450 - 108 1.114 - 10°
9.488 - 108 1.110 - 10? 9.547 - 108 1.104 - 10°
102 | 8.600 - 10? 1.020 - 1010 8.654 - 10” 1.015 - 10
8.630 - 10° 1.017 - 1010 8.684 - 10° 1.012 - 100
8.712 - 10° 1.009 - 1010 8.760 - 10° 1.004 - 1010

Going forward, we will present only the comparison of 7(x; ¢, a) against (2.16), so we ex-
plain briefly how we compute this approximation. In (2.18), (2.19) and (2.20), we determined
Do, Dy and Dy in terms of Sy(g, v; H) and in the process replaced geometric progressions in h
with suitable approximations. Of course the geometric progressions could just be computed
exactly. We keep the exact but messy expressions so obtained, and for Sy(q,v; H) use the
main terms described in Proposition 2.1. This yields an expression for m(z;q,a) as an ex-
plicit integral, which we computed numerically in Sage. The actual values of 7(x; ¢, a) were
computed in C++ using the primesieve library. Code for both computations can be found on
the first author’s website.

Next we consider ¢ = 8. Here too the constants simplify, with ¢3(8; (a,b)) depending only
on the difference b —a (mod 8) (a fact reflected in the data, as predicted by Conjecture 1.6).
Explicitly, we have ¢2(8; (a,a)) = (5log2 — 3logm)/2, c2(8; (a,a + 2)) = c2(8; (a,a + 6)) =
(logm —log2)/2, and ¢2(8; (a,a +4)) = (logm — 3log2)/2. Thus, we should expect that,
among the non-diagonal patterns, those with b — a = 4 should be the least frequent, and
that those with b —a = 2 and 6 should be rather close. Indeed, we find:

v [m(@8, (L) [7(:8,(L,3) [ #(@:8,(1,5) [ n(x;8,(1,7))
Actual | 10”7 [2.356-10° 3.496 - 10° 3.351 - 10° 3.508 - 10°
(2.16) 2.369-105 |3.462-10° |3.370-10° | 3.511-10°
1010 12.170 - 107 3.101 - 107 2.988 - 107 3.117 - 107
2.179 - 107 3.081 - 107 3.004 - 107 3.112 - 107
10T [ 2.010- 108 2.787 - 103 2.696 - 108 2.802 - 103
2.016 - 108 2.775 - 108 2.709 - 108 2.795 - 108
1012 ] 1.871 - 107 2.530 - 10° 2.456 - 10° 2.545 - 107
1.876 - 107 2.523 - 10? 2.466 - 10° 2.537 - 10?

We now turn to the patterns (mod 12). Here, the quadratic character x (mod 3) plays a
role for those patterns (a, b) with a #Z b (mod 3). In particular, it does not play a role in the
diagonal patterns, for which cy(12;a) is given by (1.1). For non-diagonal patterns, we have:
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a @.5) @7 (1, 11) G.1)

(125 a) | £ log(2m/9) + T5 A1y 5 log(m/8) | 5log(2m) — T5A12x 5 log(27/9) — T A2
a (5,7) (7,1) (7,5) (11,1)

c2(12;a) | 3 log(2m) + N 5 log(m/8) | 5log(2m) — N 5 log(2m) + = A1y

(The other values of c3(12;a) are determined by cy(12; a°PP).)

Here, A5, ~ 1.036, so that c2(12;(5,7)) and ¢2(12; (11, 1)) are the largest of these. More-
over, as in the (mod 8) case, there are symmetries between patterns with the same difference

b — a. We find the following.

v | w(x;12,(1,1)) | w(2;12,(1,5)) | w(2;12,(1,7)) | w(x;12,(1,11)) | w(w;12, (5, 1))
Actual |10 [2.305-10° 3.809 - 10° 3.352 - 10° 3.245 - 10° 2.994 - 10°
(2.16) 2.364 - 10° 3.682 - 10° 3.318 - 10° 3.347 - 10° 3.073 - 10°
10™2 | 1.842 - 107 2.670 - 107 2.458 - 10 2.402 - 107 2.271 - 107
1.863 - 109 2.651 - 107 2.448 - 107 2.440 - 10° 2.307 - 10°
x m(x;12,(5,5)) | w(z;12,(5,7)) | w(x;12,(7,1)) | w(z;12,(7,5)) | w(x;12,(11,1))
10° |2.305-10° 4.061 - 10° 3.351 - 10° 3.245 - 10° 4.061 - 10°
2.365 - 109 3.956 - 106 3.318 - 106 3.347 - 109 3.956 - 109
1012 ] 1.842 - 107 2.831- 107 2.458 - 10 2.402 - 107 2.831 - 10
1.862 - 107 2.784 - 10° 2.448 - 10° 2.440 - 10° 2.784 - 10°

We close by considering ¢ = 5 (which amounts to considering the last decimal digit of
primes). Essentially no simplfications can be made for the constants c3(¢;a). For any non-
diagonal pattern (a,b), we find

ea(5: (0.8)) = BT 1 PR (10,0 £(1 1) sy 500 — ) + XX,

where y is either of the complex characters (mod 5). Apart from the understood symmetry
c2(5; (a, b)) = co(5; (—b, —a)), the value of ¢y determines the pattern. Thus, we might expect
significant variation between the various patterns, and in particular no additional symmetries
like we saw (mod 8) and (mod 12). We find, presenting only the first of (a,b) and (—b, —a):

x m(x;5,(1,1)) | m(z;5,(1,2)) | m(x;5,(1,3)) | m(x;5,(1,4)) | m(x;5,(2,1))
Actual |10 |2.328-10° 3.842 - 10° 3.796 - 10° 2.745 - 10° 3.244 - 10°
(2.16) 2.354-10% | 3.774-10° | 3.835-10% |2.750-10% | 3.149-10°
10™2 ] 1.848 - 109 2.704 - 107 2.706 - 107 2.145 - 107 2.386 - 10?
1.863 - 10° 2.682 - 10 2.717 - 107 2.141 - 10° 2.352 - 10
v 725, (2,2) [ 7(235,(2,3)) [ 7(x;5,(3,1)) | w(235,(3,2)) [ 7(x;5, (4,1))
107 |2.228 - 10° 3.444 - 10° 3.047 - 10° 3.595 - 10° 4.092 - 10°
2.337 - 109 3.391 - 10° 3.033 - 109 3.568 - 10° 4.176 - 109
10" ] 1.811 - 107 2.499 - 10? 2.301 - 107 2.586 - 10” 2.867 - 10°
1.856 - 107 2.477 - 10° 2.295 - 107 2.570 - 10° 2.893 - 107

An interesting feature to be observed here is that, initially, m(x;5,(1,2)) is larger than
m(x;5,(1,3)), despite our conjecture predicting the opposite ordering. In fact, this is true for
all z between 41,231 and 5.076 - 10*. However, at about 5.082 - 10!, 7(x;5, (1, 3)) becomes
consistently larger, seemingly forever, exactly as our conjecture would predict. We take this
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reasonable evidence for our speculation that there are even more lower-order terms (e.g.,
the order of z(loglogx)?/log® z), which in this case apparently conspire to point in the
posite direction than the bias in the Main Conjecture.
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