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ABSTRACT. Let n > 6 be an integer. We prove that the number of number fields with Galois
group A, and absolute discriminant at most X is asymptotically at least X/ 8+O01/n)  For n > 8
this improves upon the previously best known lower bound of Xu*%)/(‘m*‘l)*e, due to Pierce,
Turnage-Butterbaugh, and Wood.

1. INTRODUCTION

For any number field K, any integer n > 2, any real number X, and any transitive subgroup G
of the symmetric group Sy, let

(1.1) Fuk (G X):={L/K:[L:K|=n, Gal(z/K) ~ G, |Ng(Dr/k)l < X},

where L denotes the Galois closure of L over K » DK is the relative discriminant of L over K,
and N, K /@ denotes the norm map. Define

(1.2) Nnk (G X) == #Fn k(G; X).

Our main result is the following bound on N, i (A,; X), the number of extensions whose Galois
closure is the alternating group.

Theorem 1.1. Let n > 6 be an integer, with n # 7, and let A,, denote the alternating group on n
elements. For any number field K, as X — oo, we have

(n—4)(n2—4)
X s@3-n%)  4fn is even
Nn,K(Ana X) > (n=T)(n+2) ] ) ’
8n? if n is odd.

The proof, given in is inspired by Ellenberg and Venkatesh’s lower bounds [EV06] on
Ny, ik (Sp; X). Their strategy was to count degree m polynomials with a height bound on the
coefficients, sufficient to guarantee that these polynomials generate fields whose discriminant is
bounded as in (|1.1). Hilbert’s irreducibility theorem guarantees that almost all of them generate
Sn-extensions, and Ellenberg and Venkatesh applied estimates from the geometry of numbers to
bound the multiplicity with which each number field was thus counted.

What we do here is to import this machinery into Hilbert’s original construction of A,-polynomials
[Hil92, pp. 126-127]. Indeed, [Hil92] is the very paper in which Hilbert proved his irreducibility the-
orem. Let r := L"T_lj Following Hilbert, we construct a univariate polynomial F' over a function
field K(a1,...,a,,t) whose Galois group over K(ay,...,a,,t) is A,. As Hilbert argued, there are
infinitely many specializations of the a; and ¢ for which the resulting polynomial has Galois group
A, over K, and following Ellenberg and Venkatesh we quantify how many such specializations there
are and how many A,-fields they produce.

1.1. Discussion of the main result. The asymptotic behavior of N, x(Ay; X) is known only
when n = 3. In particular, if K does not contain third roots of unity, then N3 j(A3; X) ~ cr X1/?
for a positive constant cg, while if K does contain third roots of unity, then N3 j(Az;X) ~

cxk X% log X. When K = Q, this follows from Cohn [Coh54], and for general K from Wright [WriS9)
1
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Theorem 1.1], who proved an asymptotic formula for N,, i (G; X) whenever G is abelian. For n > 4,
as yet unproved cases of Malle’s conjecture [Mal04] predict an asymptotic formula for N, i (A4,; X).
When n = 4, this prediction states that Ny g (A4; X) ~ cxX/?(log X)? if K contains third roots
of unity, and that Ny g (A4; X) ~ cxX1/?1log X if K does not contain third roots of unity. For
all n > 5 and all number fields K Malle’s conjecture predicts that N, g (A,; X) ~ cKXl/2 log X.
When n > 5, Malle’s prediction does not depend on whether K contains third roots of unity.

For lower bounds on N, x(A,; X), Baily [Bai80] proved that Ny g(A4; X) > X1/2. For n > 4,
Pierce, Turnage-Butterbaugh, and Wood [PTBW20, Theorem 1.15] proved that N, g(A,; X) >
XBn—¢ with

1.3 — 1o
(13) = L
This result is stronger than ours for n = 6, and is, to our knowledge, the only known quantitative
lower bound for n = 5 and n = 7. There is no theoretical obstruction to our method working in
the case n = 7, but in this case it yields trivial results. For n > 8, our results improve upon those
of [PTBW20], and are, to our knowledge, the only bounds stated in the literature for K # Q.

Upper bounds on N, g (Ap; X) are also known. Indeed, these will be an ingredient in our proof.
For n = 4 and n = 5 the sharpest known bounds are those in [BST"20] and [BCT] respectively.
For n > 6 we have the Schmidt bound [Sch95]

(1.4) Nk (G X) < X",

which holds for arbitrary subgroups G C S,. When G = A,, and K = Q, Larson and Rolen [LR13]
obtained an upper bound that is smaller by a factor of about X/4. For large n, the Schmidt bound
was improved by Ellenberg and Venkatesh [EV06] to N, x(G; X) < X exp(Cv1081) with a constant
C' that may be made explicit. This upper bound was further improved to N, x(G; X) < X Clog’n
for a suitable constant C' by Couveignes in [Cou20] and then to N, x(G;X) < X Clog?n by the
second and third authors [LT20] and Lee [Lee20].

Remark 1.2. It is possible to slightly improve under certain hypotheses that are
known for large n. See |Proposition 3.9 at the end of this note.

Our methods also allow us to obtain a lower bound for the number of S, extensions with a
fixed quadratic resolvent. Recall that the quadratic resolvent of an S, extension L/K is the unique
quadratic extension M /K contained in the normal closure L /K. For any quadratic extension M /K,
define 3

No ik (Spn, M; X)) :=#{L € F, k(Sn; X): M C L/K}.

Theorem 1.3. Let n > 6 be an integer, with n # 7. For any number field K and any quadratic
extension M/K, as X — 0o, we have

(n74%(n2274)
X 8(n2-n?) if n is even
Nn,K(Sm M; X) > (n—=T7)(n+2) / 7
8n? if n is odd.
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2. PRELIMINARIES

2.1. Notation. We begin by fixing a base number field K with [K : Q] = d and an integer n > 2.
differ from line to line. Throughout, any constants implied by the notation >, <, and O(—) will
be allowed to depend on these quantities.

For the purposes of this paper, we define the height of a monic polynomial f := z™ + c;a™ ' +
-4 cp € Oglz] by

(2.1) ht(f) := max ||e|'/*,

where, as in [EV06], for any algebraic number o we write ||«|| for the largest Archimedean valuation
of a.
Finally, it will be convenient to introduce a parameter Y, depending on X, d, and n, given by

(2.2) Y ;= X 1/dn(n=1),

2.2. Discriminants and resultants. For the convenience of the reader, we next review some well
known facts about discriminants and resultants.

Definition 2.1. Let R be an integral domain ring with fraction field K(R) whose algebraic closure

is denoted K(R). Given polynomials f := coz™ + - - - + ¢, € R[z] and g := bgz™ + - - - + b, € R[x],
the resultant Res(f,g) of f and g is defined by

(2.3) Res(f,g) :==cg'by [] (a—8)
F(ayo
g(8)=0
(2.4) = (=" ] £,
9(8)=0

where the product runs over roots « of f and roots  of g in K(R), counted with multiplicity.

The discriminant of f is

n(n—1)
1T
CV 2 restr. g,

(2.5) Disc(f) =
co
where f’ is the derivative of f.

Lemma 2.2. Let R be an integral domain with fraction field K(R) whose algebraic closure is
denoted K(R). Let f = cox™+- -+ ¢, € Rlx] be a polynomial with roots o, . .., an in K(R). Then

Dise(f) = (~1)" Ve T 7 =2 [[ (o -y

B:f"(B)=0 l<i<jsn

Proof. The first equality follows from (2.4]). The second is a straightforward calculation factoring f
as a product of linear polynomials over K (R), as is explained in [Lan02, Proposition IV.8.5]. Note
that the last expression in the statement of the lemma is used as the definition of the discriminant

in [Lan02, Proposition IV.8.5]. O
For convenience, we also note two easy consequences of (2.3 and ([2.4)).

Corollary 2.3. With notation as in |Definition 2.1, Res(f,g) = (—=1)""Res(g, ). In particular
Res(f,g) = Res(g, f) if either f or g has even degree, as holds in the case g = f'.

Corollary 2.4. For R an integral domain, and f,g,h € Rlx]|, we have Res(f + hg, g) = Res(f, g9)
and Res(f, gh) = Res(f, g) Res(f,h).
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Remark 2.5. From we see that the discriminant of f is invariant under the Galois group
permuting the roots of f, and hence can be expressed as a weighted homogeneous polynomial
in the coefficients of f. Further, if f is monic with ht(f) < Y, then implies that
|Disc(f)|| < Y™n=b),

2.3. Preliminaries on number field counting. We now import some of the machinery initially
developed by Ellenberg and Venkatesh [EV06] to bound N, i (Sy; X) from below that was further
studied by the second and third authors [LT19].

Our strategy for proving following the proof of the lower bound in [EV06, Theorem
1.1] given in [EV06] §3], is to reduce the problem to proving a lower bound for the number of
algebraic integers with small norm that generate A,-extensions of K. To formulate this reduction,
for a transitive subgroup G C 5,, we write

——~—

(2.6) Pur(GY):={2€O0x : ||z| LY, [K(2): K] =n, Gal(K(2)/K) ~ G}.

We begin by quoting a bound on the multiplicity with which a given extension L/K is cut out by
elements of P, x(G;Y).

Lemma 2.6. Let L/K be a degree n extension and let G = Gal(L/K). Let
ML/K(Y) =#{2 € Pok(G;Y): K(z) ~ L}.
Then My x(Y) < max{Y"|Disc(L)|~'/2,Y"¥2} where Disc(L) is the absolute discriminant of L.

Proof. This is essentially [LT19, Proposition 7.5], and we recall the proof.

We count z € Op with ||z|| < Y, with no reference to K. To do so, embed O «— R" as
usual and write Ag,...,\pq—1 for the successive minima (with A\g < 1). If A\,q—1 < Y, then an
integral basis for Oy fits inside a box of side length O(Y'), so that My (Y) < Y| Disc(L)| /2,
Otherwise, let £ < nd — 1 be the largest integer for which Ay <Y, and we have

yk+1 yk+1

Mett A1
Mo e S Dise(n)i2 k! -t

If k < 2 — 1 then the first half of (2.7) yields My, x(Y) < Y"¥/2%; if k > % — 1 then we use the

second inequality in (2.7) in combination with the bounds Y < A\,q_1 and A\,q_1 < Disc(L)l/ nd
[BSTT20, Theorem 3.1] to again conclude that

(2.7) Mp (V) <

My k(Y) < Disc(L)1/2< )1/"d> < ymiz,

Disc(L
D

With in hand, we are able to make explicit the reduction from counting integers
generating G-extensions to counting G-extensions themselves.

Proposition 2.7. Let K be a number field of degree d, and let G be a transitive subgroup of Sy
for somen > 3. Lete >1/(n—1) and C > n be constants such that:

o N, k(G; X) < X¢, and
® #Pn,K(G; Y)> ydc
hold for all sufficiently large X and Y. Then

C—n/2

(2.8) Nai (G5 X) > X 2o
ifC’Zn(e—i—%), and

2e(C—n)

Nox (G X) > X @en(n?—n)
if not.
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Proof. Let Y = X 1/dn(n—1) e will proceed with the proof in three cases, depending on whether
C>n (e + %) and whether e > 1/2. In each of these cases, we will show the existence of some
Z > 1 such that

(2.9) > Myg(Y) < #Pnk(G;Y)/2.
LE}—n’K(G;Z)

Since [Disc(K ()] < Y1 for any o € P, (G;Y), we have Ny, i (G; X) > #Pn x(G;Y)/M,
where M is the maximum of My k(Y) over G-extensions L/K with norm of discriminant greater
than Z. This maximum M may be estimated by means of while may be established
by combining with the assumed upper bound on N, i (G; X). The different cases in
the statement of the proposition follow by making suitable choices of Z, as we now explain.

Suppose first that e > 1/2. Then for any Z < Y, by and partial summation, we
have

S Myg(y) < yrizes,
LG]‘-n,K(G;Z)

2d(C—n)
IfC <n (e + %), then we choose Z to be a sufficiently small multiple of Y @<= for which ({2.9))
holds. If C > n (e + %) we choose Z to be a sufficiently small multiple of Y.
If instead e < 1/2, then we again have C' > n (e + %) and take Z to be a sufficiently small
multiple of Y"¢. In this case our hypotheses imply that

> Mpg(Y) < Y™ logy,
LE]‘—n’K(G;Y"d)

the log Y factor being relevant only for e = % O

Using the Schmidt bound of (T.4) in[Proposition 2.7} i.e. taking e = %2, we obtain the following
immediate consequence.

Corollary 2.8. With the assumptions of [Proposition 2.7,

an/Q f C n2+4n
X n?-n i > =0 and
Nn,K(G; X) > (C—n)(n+2) 2;1_4 )
n3—n2 ) n-ran
X if O < ==,

3. PrROOF OF [THEOREM 1.1

3.1. Overview of proof. In this section, we prove The proof in the even case
is given in and completed in while the proof in the odd case is given in and
completed in As described earlier, our strategy is to adapt the original constructions of A,-
polynomials by Hilbert [Hil92) pp. 126-127], and count the number of distinct fields thus produced.
For K a number field, we construct a polynomial F' € K(ay,...,a,t)[x] whose Galois group over
the function field K(aq,...,a,,t) is A,. By specializing the variables ai,...,a, and t suitably,
we will obtain many irreducible polynomials whose Galois groups are still A,,, and then we use
[Proposition 2.7|to conclude the proof.

The constructions differ depending on whether n is even or odd. One may consult [Ser97, §10.3]
for an English-language treatment of Hilbert’s work in the case that n is even, and [MiS17, §5.2]
for a treatment of both the even and odd cases.
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3.2. Notation for proof. We begin by introducing some notation which will be used in both

cases. Set 7 = 5 — 1 when n is even and set r = ”T_l if n is odd. We then introduce a polynomial

(3.1) h(z) =" + ax" '+ +a, € Oxlay, - ,ar][x]
in z and in the indeterminates a;, and define g(x) € Oklai,- - ,ar,a][z] by

n(x — a)h(x)? if n is even,
(3:2) 9(@) = {(75 - 1)();10 (— L)h@)? i n s odd.
For aq, -+, 0, a, 7 € K we denote by |q,.....a,,a,r the evaluation map

lat,omar: Klar, ..., ar,a,t, 2] = K[z]
flai,...,ar,a,t,z) — f(oa,...,00,0,7,2) = flag,...ara.r

We also use analogous notation when the domain has fewer indeterminates; for example, |, denotes
the map K|[t,z] — K|[z| given by f(t,x) — f(7,z). Observe also that when aq,---,a,,, 7 € Ok,

these maps restrict to homomorphisms from the appropriate polynomial rings over Ok to Og|[x].

3.3. Proof of [Theorem 1.1| and [Theorem 1.3| for even n. Assume that n > 6 is even. Based
on Hilbert’s construction [Hil92) p. 125-126], we consider polynomials whose derivative is nearly a
square. Recall our notation for g(x) as defined in (3.2)). Let f(z) € K(ay,...,a, a)[z] denote the
antiderivative of g(x) with respect to = such that (z — a)? divides f(z).

Then, for each v € %(’)K[ah ..., ap,al[t], define

@) = F@)+7,  fy(x) = (a)"fy(z/n).

Note for v € LOklas, ..., ar,a][t], we will have f,(z) € Oklai, ..., ar, a,t][z] is monic with integral
coefficients.

Lemma 3.1. With notation as above, the discriminant of fy(x), viewed as a polynomial in x, is a
square if and only if (—1)"/?v is a square.

Proof. Using [Lemma 2.2] since n is even, it is equivalent to compute whether the discriminant of
fy(x) is a square. Using |[Lemma 2.2| again, we find

Disc(f, (@) = (1" T F(8)

B:(8)=0
2
= ()"0 f@) | I F0)
B:h(B)=0
2
= (=" | I £0)
B:h(B8)=0
The final expression is a square if and only if (—1)"/ 2+ is a square. O

We now essentially recall the construction of Hilbert on which ours is based; Hilbert in fact
further takes 6 = 1 in the lemma below. In (3.2)), further specialize to the case

a=0, h(x):=(@—pF1) - (x—F),
where f1,...,03, are nonzero and distinct elements of Ok, for which f(ﬂl),...,f(ﬁr) are also
nonzero and distinct. (For example, choose 3; = i for each i. Then g(z) is nonnegative for x > 0,
so that f is increasing there.)

We write P, P, ﬁy, and P, for the associated specializations of ]?, fs f,y and fy; the first two are
elements of K|z|, and the latter two of K|z, t].
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Lemma 3.2. With the notation above, for any § € K*, the Galois group G ofP iz € K(t)[2]
over K(t) is A, if 0 is a square and S, otherwise. If 5 is not a square, then the Galozs group of
P qyn/2g2 over K(Vo)(t) is A,.

Proof. See [Hil92) p. 125-126], [Ser97, §10.3, Theorem]|, or [MiS17, §5.2]; we summarize Martinez’s
argument from [MiS17].

We begin by considering the Galois group G’ of ﬁfl n/25;2 as a polynomial over C(t). The
discriminant of ﬁ(_l)n/26t2 € C(t)[z] is a square by so G' C A,,. We will show that
G’ is in fact all of A, for which it suffices to show that G’ is generated by 3-cycles and that it is
transitive. We prove these in turn.

Since there are no unramified finite extensions of C(t), G’ is generated by the inertia groups at

the ramified primes. It therefore suffices to show that these are all 3-cycles.
By our discriminant computation in the ramified primes are given by (¢) and

(t\fj: \/ 1)n/2+1 P(; )) Modulo (¢), ﬁ(fl)n/zw has a double root at = 0 and its other

roots are simple. (Note that P(3;) # 0 for each §;, as the derivative of g is nonnegative.) There-
fore, the inertia group at (t) is either trivial or generated by a transposition; since it is a subgroup
of A,, it must be trivial.

Modulo ( tV/§ + \/ ”/2+1P(ﬂz)>, ]5(_1)”/2&2 has a triple root at x = 3; and its other roots are

simple. The corresponding inertia group is therefore either trivial or a 3-cycle, and this completes
the proof that G’ is generated by 3-cycles.

To complete the proof that G’ ~ A,, we will verify G’ acts transitively on the n roots of
P( 1)n/262 OVer an algebraic closure. Notice that P( 1/2ge = — P+ (—1)"/25t2. As P has a simple

root, (—1)" 2+15P is not a square in C(z). Thus, P(_l)n/QW is irreducible as a polynomial in
C(z)[t]. We conclude that G’ = A,,.

It thus follows for any finite extension L/K that the Galois group of ﬁ(_l)n /25.2 Over L(t) contains
A,, and is thus equal to either A, or S,. The remainder of the claim follows from observing that,
by these two possibilities correspond exactly to whether or not ¢ is a square in L. O

Remark 3.3. Our proof corrects a sign error, found not only in [MiS17] but also in [Hil92]. At
least in Martinez’s case, this can be traced to a missing sign in [MiS17, Observation 5.2]. As Lang
remarks in his Algebra [Lan02]: “Serre once pointed out to me that the sign (—1)""~1/2 was
missing in the first edition of this book, and that this sign error is quite common in the literature,
occurring as it does in the works of van der Waerden, Samuel, and Hilbert.”

We now extrapolate Hilbert’s result to prove an analogue over a larger base field.

Lemma 3.4. With notation as above, for any § € K>, the Galois group of f 1)n/25¢2 OVEr
K(ai,...,ar,a,t)[x] is Ay if § is a square and S, otherwise. If § is not a square, then the Galois
group of f(_yyn/252 over K(é)(ay,...,ara,t)[x] is Ay,.

Proof. As a first step, note that the Galois group of f, agrees with that of ]77, and so we will
compute the Galois group of the latter polynomial in the case that v = (—1)”/ 25¢2.

In the case that J is a square, by the polynomial f; specializes to a polyno-
mial ﬁy € K(t)[x] with Galois group A, over K(t). Hence, the Galois group of f(_l)n/z(;tz
over K(ay,...,ar,a,t)[x] contains A,. Since the discriminant of this polynomial is a square by
its Galois group must be exactly A,. The case that § is not a square follows analo-
gously. O
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3.3.1. Completing the proof of [Theorem 1.1 and [Theorem 1.5 for even n. We begin with

for which we make the choice § = 1. Using we may choose v € K|ay,...,a,,al[t]
so that f, has Galois group A,. We vary aq,...,a,,a,7 € O subject to the constraints

lewl] < Y |lofl < Y, 7)) < Y™/2,

d(n?+2n+8)

making a total of =g (Y -Y2...y"/2-1.y . yw2yd — y= 5 choices of the parameters. By

the Hilbert irreducibility theorem (Theorem A.2) we have
(3.3)

#{a, ... o, 0,7 € Ok ht(f’7|011,~-,04r,047‘r) <Y, Gal(f7|al,m,ar,a,‘r/K) An}>Y
We now note that, for each fixed polynomial ¢ € K|[z], there are at most degy = 2 many

d(n +2n+8)

tuples (v, ..., ., ,7) so that f,]a;,.. a0, coincides with g, or equivalently so that fy|a,,. . a..a.r
coincides Wlth q, Where q(x) := (n!)™"q(nlx). To see why, first note that the value « is determined
as the unique root of Wthh appears with odd multiplicity. Then, because h is monic and we know
the value of h?, the Values ai, ... ,aq, are determined. Having determined the values o, aq, ..., o,
there are then at most deg~y (Viewed as a polynomial in ¢) many choices of 7 so that the constant
coeflicient of ﬁ]al7,,,7aha -, viewed as a polynomial in z, is equal to the constant coefficient of ¢.

Therefore, in the notation of (2.6) we have P, i (A4,;Y) >k YM, and hence by taking
C = (n? 4 2n + 8)/8 in |Corollary 2.8/ we conclude that

(n=4)(n?—4)
Noic (A X) > X 5083
The proof of for even n is exactly the same, except choosing d to be any integral
element for which M = K (1/9).

3.4. Proof of [Theorem 1.1] and for odd n. Assume that n > 7 is odd. Again
we follow Hilbert [Hil92l p. 126 - 127]; see also [MiS17, §5.2] for a version in English. In the case
that n was even, we considered polynomials whose derivative is nearly a square, and used this to
compute the Galois group of the resulting polynomial. In the case n is odd, we instead consider
polynomials for which :v— — f is nearly a square. Using properties of resultants, this will let us
control the discriminant of f in much the same way as the case that n is even.

Set r = (n—1)/2, define g and h as in and (3.2)), and define g(z), h(z) € Okla, ..., ar—1,al[z]
to be the polynomials obtained from g and h by replacing a, with 2a,_1a.

Lemma 3.5. Given the notation above, there is a unique polynomial f(l’) € %(’)K [a1,...,ar_1,a][x]
of degree n, necessarily monic, satisfying
8 f ~

vt~ fla) =g(@),  F(0)=0.

For each~ € i(’)K[al, ..y ap_1,alt], the polynommlfv(x) .= f(z)+vyz € LOklar, ... ar-1,a,t][z]

s a solution to :L' fv( ) =g(x) in Klay,...,ar—1,a,t][z]. Lastly, for any ay,...,cp—1,0,7 €
O with

n—1 .
(3.4) a<y, T7<Yder, <Y (1<i<r-1),

f'y(x)|o¢1,...,a,«_1,a,7' has height <y Y

Proof. To show there is a solution to the equation z af f(x) = g(z), by differentiating both sides,

1t sufﬁces to show there is a solution to the equation :ca I - 8; For this, we only need check that

52 is divisible by . This holds precisely because the coefﬁment of x in g(x) is (n—1)(a?—2a,_1aa;)
and the image of this coefficient in the quotient Okla,...,ar,a][z]/(ar — 2a,_1a) is 0.
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Since gz—é is then uniquely determined, all terms of f(m) except the linear and constant terms

are determined. The constant term is determined by the equation :zaf f(z) = g(z). Then, any
linear term will satisfy the above equation, but the condition f/(0) = 0 uniquely determines the
linear term to be 0. Then we find x% = ﬁ(a:) = a:g—g — f(z) =g(z).

Monicity of f follows from the differential equation defining it and the assumption that the
leading coefficient of g is n — 1.

Observe that f(x) is a polynomial of degree n and the coefficients of % liein Oklay,...,ar—1,a,t|
since mg [— % It follows that the coefficients of f.y lie in !(’)K [a1,...,ar-1,a,t].

Finally, the bound on the height of fv( Mai,.ar_1,a,r follows straightforwardly from expanding
Jy (@)oo ar— 0, O

Now, for the remainder of the subsection, with f and f; as in define

f(z) :=n"f(z/n)) € Oklay, ..., ar_1,a,t][x],
fy(z) = n'”ﬁ,(m/n') € Oklai,...,ar_1,a,t][x].
Lemma 3.6. With notation as above, Disc(fy(x)) is a square if and only if (—l)r%(a) is a square.

Proof. By the discriminant of f, is a square if and only if the discriminant of f; is a

square. Therefore, we will show the discriminant of }’ty is a square if and only if (—1)”%(@ is.
Indeed, we have

Disc(f,) = (—1)""~D/2Res (fw, JZ) by Definition 2.1

= (—1)"Res (xaf; —g(x), %‘Z’)

= (- )TRGS< (2), af) by Corollary [2.4]
af, af,
= (=1)"Res | h(z), Sl BN Res e (n—1)(z —a) by Corollaries [2.3] and [2.4]
x
~ 2 ~
ofy ~190f,
—(—1)" - (=D (). 4
o T 220 -0 by @3
h(8)=0
O
The analogue of is the following.
Lemma 3.7. Let P € Q[x] be of odd degree n, satisfying the differential equation
oP ral 2 2 2
ro-—P=G  G=@m-DE=-a)r=F) (=) (@-F5),
where the B; are all distinct posztwe mtzonal numbers, and 2a) >, B; L= —1. Then, for a suitable

choice of the B;, the values & (ﬁl) c ax 23, 61( «) are pairwise distinct.
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Further, for any number field K and any 6 € K*, setting v := (—1)"6t> — %—f(a), the Galois
group of splitting field of ]57 =P+ (-1)r6t* — %—g(a))x over K(t) is A, if § is a square and Sy,
otherwise. If § is not a square, then the Galois group of ]37 over K(\/6)(t) is A,.

Proof. First, we check 2 (ﬁl) ..,%(ﬁr) are pairwise distinct, following [Hil92, p. 127]. By
assumption that all 5; > O, we find o < 0 and hence G(z) > 0 for x positive. Thus, for 3; > 3; we
have

(/31) - 7(53)

P(B) _PB) _ [Mag—Ple), % Gl)
- = < ~dxr = dx > 0.
Bi B; z? z?
We now check that, for a suitable choice of the §;, we have~g—§(a) # %—f(ﬁi) for each i. To
do this, formally set 8; = 1 for each 4, in which case we have P(z) = (z —1)" —nz — 1. Then

J J

(ﬂz) = C,)m( ) = —n is negative, while

opP oP [ —1 —n \"!

8:c(a) Oz (n—1> n[(n—l) ] ”
is positive. By continuity, these signs will persist if the 5; are perturbed slightly, so that it suffices
to take the §; all sufficiently close to 1.

We next check the Galois group of the splitting field of ﬁy over C(t) is A,. As in
we follow [MiS17] and correct a sign error. Using M Disc(Py) is a square, so the proof is

reduced to showing that all the inertia groups are 3-cycles and that the Galois group acts transitively
on the n roots of P, over an algebraic closure.
By our discriminant computation in the ramified prime ideals are

0, (Vo \/ (P ey~ P s).

We now argue as in the even case. Modulo (), P has a double root at 2 = o and no other repeated
roots; therefore, the corresponding inertia group is either trivial or generated by a transposition
and so must be trivial. Modulo any of the remaining ramified prime ideals, P has a triple root at
x = (; and no other repeated roots, and the inertia group is trivial or cyclic of order 3.

To complete the proof, we show the Galois group acts transitively on the n roots of ﬁ over an

algebraic closure. As a polynomial in C(z)[t], ﬁ is reducible if and only if (—1)" (aP (o) — P)

is a square in C(z). However, P(0) = —G(0) # 0, so P is not divisible by consequently, P
irreducible in C(x)[t]. Since t appears only in the linear term in P7 and since z { PW, we find that

ﬁy is irreducible in C(¢)[z] as well and that the Galois group acts transitively on the n roots of P,
over an algebraic closure.

Lastly, as in the even case, this shows for any finite extension L/K that the Galois group of ]57
over L(t) contains A,,. The remaining conclusions follow from and the fact that a degree
n extension whose Galois group contains A,, is A, if and only if it has square discriminant. O

Analogously to we obtain the following:
Lemma 3.8. Let § € K*. The polynomial f (x) € K(a1,...,ar-1,a,t)[z] has Galois

(z) has Galois

1)r6t2— af( )
group Ay, if 0 is a square and S, otherwise. If(5 is not a square, then f

group A, over K(v/d)(a1,...,ar_1,a,t).

(~1)ro*~5L(a)
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Proof. Let vy := (—1)"6t? — %(a). The Galois group of f,(z) equals that of ﬂ(x) Supposing~ﬁrst
that § is a square, this latter Galois group is contained in A, because the discriminant of f(z)

is a square by and it contains A, because the specialization of has Galois

group A,. The case that ¢ is not a square is analogous. O

3.4.1. Completing the proof of [Theorem 1.1 and for odd n. For we
take 6 = 1 and let our parameters vary over all integer values in the ranges (3.4). We take

s d(n?+7)
y=(-1)"t* - %(a), so ||7]| <5 Y»~1/2. We thus make > Y s choices of these parameters.

Next, analogously to the case that n is even described in [§3.3.1} for any fixed polynomial ¢ € K|x],
there are at most degy = 2 possible values of (a1,...,ar—1,a,7) so that fy|a;...ar1,0r = ¢
At this stage, we now proceed as in the even case. Applying we have

d(n2+7)

#{alv cey Qp1,Q, T € OK : ht(f|a1,...,ar,1,a,7) < K Gal(f|al,~~~,ar71:a,T/K) = An} > Y 8 .

d(n2+7)

Therefore, in the notation of (2.6), we have P, x(A,;Y) >k Y™ 5 , and hence by taking C =

(n? 4 7)/8 in [Corollary 2.8/ we conclude that
(n=7)(n+2)

Npg(An; X) > X a2

As in the even case, to obtain we instead take d to be any integral element for which
M = K(+/9) and proceed as above.

3.5. Minor improvements under stronger hypotheses. As we observed in [Proposition 2.7]
our lower bounds can be improved slightly with improvements in the upper bounds, which leads to
the following result:

Proposition 3.9.

n2 —2n+8

(1) Let n > 6 be even and suppose that Ny, g(Ap; X) < X 80 . Then

n272n+8

Ny i (Ap; X) > X 807

In particular, this holds unconditionally for any n > 430.

n2 —4n+7

(2) Let n > 7 be odd and suppose that Ny k(An; X) < X s . Then

n2 —A4An+7

Ny i (Ap; X) > X s02-m)

In particular, this holds unconditionally for any n > 433.

We briefly indicate the idea behind [Proposition 3.9| and omit a detailed proof. Assume the
stated upper bounds for N, x(A,; X) as in [Proposition 3.9(1) and (2). These upper bounds were
precisely constructed so that C' > n(e+1/2) for C and e as in (2.8). Then, following the same line
of reasoning as in the proof of (in particular, the reasoning in[§3.3.1{and [§3.4.1)) leads
to [Proposition 3.9 after some elementary arithmetic.

Finally, the two hypothesized upper bounds on N,, x(Ap; X) hold for n > 430 and n > 433 by
[LT20, Theorem 1.2], [Lee20, Theorem 3.1], and an explicit computation (whose details we also
omit).

APPENDIX A. HILBERT IRREDUCIBILITY

In the course of our proof of we apply Hilbert irreducibility to families of polynomi-
als over a function field K (aq,...,a,). We use a form of Hilbert irreducibility applied to counting
polynomials in a box with varying edge lengths, in a box which is not a hypercube.



12 AARON LANDESMAN, ROBERT J. LEMKE OLIVER, AND FRANK THORNE

Although it is well known to experts, we could not find an explicit statement of this particular
form of Hilbert irreducibility. For completeness, we include a proof following the method of [Ser97,
§13] ]

Definition A.1. For K a number field, and = € K, as in define [|z] := max, |o(z)| as o
ranges over all embeddings K — C and |o(z)| denotes the complex norm. For S C A"(Ok) = O,
and positive real numbers ey, ..., e, define
S(Tier,..en) = {(ar,....ar) € 8+ [lag]] < T}

and define

#S(Ta €15, 67«)
#(AM(OK))(T; €1, - - . €r)
to be the proportion of points of A"(O)) with ith coordinate less than T lying in S.

ps(Tien,... en) =

To state the upcoming theorem, we now set some notation. Let K be a number field and

let F(ai,...,ar,x) € Oglai,...,ar][z] be an element with Galois group G when viewed as a
polynomial in = over K(ay,...,a,). Let S C A"(Ok) denote the set of choices of integral elements
(a1,...,a,) € A"(Ok) so that the image of F' in Oklay,...,a,][z]/(a1 —aq,...,a, —a,) has Galois
group G.

Theorem A.2 (Hilbert irreducibility). With notation as above, for e1,...,e, € Rsg, we have
limp oo ps(Tse1,...,e,) = 1.

Proof. By [Ser97, §9.2, Proposition 2|, the set of exceptions (ai,...,a,) € A"(Og) = O} belong
to a thin set. Recall that a thin set in A" can be described geometrically as a subset 2 C A"(K)
so that there exists some generically quasi-finite 7: X — A" with Q C 7(X (X)) and so that each
irreducible component of X which dominates A” maps to A" with degree at least 2.

Hence, it suffices to prove that for M the intersection of a thin set with Of,

lim pp(Tseq,...,e) =0.
T—o0

Let M = O} Nw(X(K)) be our specified thin set, for 7 : X — A" as in the definition of thin set
above. If M is contained in the image of X (K) it suffices to prove the statement for each of the
irreducible components of X separately, and we henceforth assume X is irreducible.

We first consider the more difficult case when X dominates A", in which case X — A" has
degree at least 2. For p C Ok a prime, let M, denote the reduction M mod p, viewed as a subset of
(Ok/p)", and let N(p) € Z denote the norm of the ideal p. By [Ser97, Theorem 5, §13.2], there is
a finite Galois extension K,/K and a constant ¢; < 1 with the following property: For each prime
p C Ok which splits completely in Ky, we have #M, < ¢, N(p)" + O(N(p)"~'/?). In particular,
for all primes p of sufficiently large norm which split completely in K, the image M, in (Og/p)"

WN(MWO((J)V@)H”)
N(p)™
Let S be the set of such primes p which are sufficiently large in the above sense and which split

completely in K. For any finite subset S’ C S, it follows from the Chinese remainder theorem
that par(T;eq,...,e.) is bounded above by

(Al) H (5’3 —+ 0T,S’<1)-
pes’

has density d, = © , which is bounded away from 1.

Since S contains infinitely many primes by the Chebotarev density theorem, and each J, is bounded
away from 1, the product in (A.1)) may be taken arbitrarily close to zero, proving the theorem in
the case that X — A" is dominant.

L Serre does remark that his proof yields a uniform bound for the number of points in every box of fixed diameter,
which does suffice for our claimed statement, as was pointed out on [EV06] p. 733].
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If 7: X — A" is not dominant, then 7(X) must instead be contained in some Zariski closed
subset of A", so it suffices to deal with the case that X C A" is Zariski closed. The proof in this
case is analogous to the case that 7: X — A" is dominant, and we even obtain the stronger bound

that M, has at most N (p)"~'+O(N (p)"~3/2) elements. The rest of the argument then goes through
N(p)" ' +O(N(p)"~5/2)

analogously, since the associated densities ¢, := satisfy o, < 1 for all primes p

) N(p)”
of sufficiently large norm. d
REFERENCES
[Baig0)] Andrew Marc Baily. On the density of discriminants of quartic fields. J. Reine Angew. Math., 315:190-210,
1980.
[BCT] Manjul Bhargava, Alina Cojocaru, and Frank Thorne. The number of non-Ss-quintic extensions of

bounded discriminant. In preparation.

[BST™20] M. Bhargava, A. Shankar, T. Taniguchi, F. Thorne, J. Tsimerman, and Y. Zhao. Bounds on 2-torsion in
class groups of number fields and integral points on elliptic curves. J. Amer. Math. Soc., 33(4):1087-1099,
2020.

[Coh54] Harvey Cohn. The density of abelian cubic fields. Proc. Amer. Math. Soc., 5:476—477, 1954.

[Cou20] Jean-Marc Couveignes. Enumerating number fields. Ann. of Math. (2), 192(2):487-497, 2020.

[EVO06] Jordan S. Ellenberg and Akshay Venkatesh. The number of extensions of a number field with fixed degree
and bounded discriminant. Ann. of Math. (2), 163(2):723-741, 2006.

[Hil92] David Hilbert. Ueber die Irreducibilitdt ganzer rationaler Functionen mit ganzzahligen Coefficienten. J.
Reine Angew. Math., 110:104-129, 1892.

[Lan02] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third
edition, 2002.

[Lee20] Sungin Lee. Upper bound on the number of extensions of a given number field. Preprint, 2020. Available
at https://arxiv.org/abs/2010.13489.

[LR13] Eric Larson and Larry Rolen. Upper bounds for the number of number fields with alternating Galois
group. Proc. Amer. Math. Soc., 141(2):499-503, 2013.

[LT19] Robert J. Lemke Oliver and Frank Thorne. Rank growth of elliptic curves in non-abelian extensions. Int.
Math. Res. Not. IMRN, 2019. Art. ID rnz307.

[LT20] Robert J. Lemke Oliver and Frank Thorne. Upper bounds on number fields of given degree and bounded

discriminant. Preprint, 2020. Available at https://arxiv.org/abs/2005.14110.

[Mal04] Gunter Malle. On the distribution of Galois groups. II. Ezperiment. Math., 13(2):129-135, 2004.

[MiS17] Mireia Martinez i Sellares. Realizing S, and A, as Galois Groups over Q: An Introduction to the Inverse
Galois Problem. Undergraduate thesis, Universitat de Barcelona, 2017. Available at http://diposit.ub.
edu/dspace/bitstream/2445/113081/1/memoria.pdf.

[PTBW20] Lillian B. Pierce, Caroline L. Turnage-Butterbaugh, and Melanie Matchett Wood. An effective Chebotarev
density theorem for families of number fields, with an application to ¢-torsion in class groups. Invent.
Maith., 219(2):701-778, 2020.

[Sch95] Wolfgang M. Schmidt. Number fields of given degree and bounded discriminant. Astérisque, (228):4,
189-195, 1995. Columbia University Number Theory Seminar (New York, 1992).

[Ser97] Jean-Pierre Serre. Lectures on the Mordell-Weil theorem. Aspects of Mathematics. Friedr. Vieweg & Sohn,
Braunschweig, third edition, 1997. Translated from the French and edited by Martin Brown from notes
by Michel Waldschmidt, with a foreword by Brown and Serre.

[Wri89) David J. Wright. Distribution of discriminants of abelian extensions. Proc. London Math. Soc. (3),
58(1):17-50, 1989.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CA 94305
Email address: aaronlandesman@stanford.edu

DEPARTMENT OF MATHEMATICS, TUFTS UNIVERSITY, MEDFORD, MA 02155
Email address: robert.lemke oliver@tufts.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208
Email address: thorne@math.sc.edu


https://arxiv.org/abs/2010.13489
https://arxiv.org/abs/2005.14110
http://diposit.ub.edu/dspace/bitstream/2445/113081/1/memoria.pdf
http://diposit.ub.edu/dspace/bitstream/2445/113081/1/memoria.pdf

	1. Introduction
	1.1. Discussion of the main result
	1.2. Acknowledgements

	2. Preliminaries
	2.1. Notation
	2.2. Discriminants and resultants
	2.3. Preliminaries on number field counting

	3. Proof of Theorem 1.1
	3.1. Overview of proof
	3.2. Notation for proof
	3.3. Proof of Theorem 1.1 and Theorem 1.3 for even n
	3.4. Proof of Theorem 1.1 and Theorem 1.3 for odd n
	3.5. Minor improvements under stronger hypotheses

	Appendix A. Hilbert Irreducibility
	References

